MOTORS

Technical Information

Orbital Motors Type RE

together in motion

White is a leading global provider of motor and steering solutions that power the evolution of mobile and industrial applications around the world.

Contents

Chapter 1	4
Technical Information	4
Operating Recommendations	
Motor Connections	
Product Testing	
Allowable bearing & shaft loading	
Vehicle drive calculations	
Induced side load	
Hydraulic Equations	
Shaft nut information	
Chapter 2	16
Optional Motor Features	16
Speed Sensors	
Free turning rotor	
Internal drain	19
Hydraulic Declutch	20
Valve cavity	21
Slinger seal	21
Chapter 3	22
Heavy duty hydraulic motors - RE	22
RE product Line Introduction	
RE Displacement Performance	
505/506 Series Housing	
505/506 Series Technical Information	
505/506 Series Shaft	35
505/506 Series Ordering Information	36
520/521 Series Housing	38
520/521 Series Technical Information	39
520/521 Series Shaft	42
520/521 Series Ordering Information	44
530/531 Series Housing	46
530/531 Series Technical Information	47
530/531 Series Shaft	48
530/531 Series Ordering Information	49
535/536 Series Housing	51
535/536 Series Technical Information	
535/536 Series Shaft	
535/536 Series Ordering Information	53
540/541 Series Housing	55
540/541 Series Hub Option Details	55
540/541 Series Technical Information	
540/541 Series Ordering Information	

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Chapter 1

Technical Information

Topics:

- Operating Recommendations
- Fluid viscosity & filtration
- Motor protection
- Hydraulic motor safety precaution
- Motor/brake precaution
- Motor Connections
- Product Testing
- Allowable bearing & shaft loading

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

- Vehicle drive calculations
- Induced side load
- Hydraulic Equations
- Shaft nut information

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Operating Recommendations

Oil type

Hydraulic oils with anti-wear, anti-foam and demulsifiers are recommended for systems incorporating these motors. Straight oils can be used but may require VI (viscosity index) improvers depending on the operating temperature range of the system. Other water based and environmentally friendly oils may be used, but the service life of the motor and other components in the system may be significantly shortened. Before using any type of fluid, consult the fluid requirements for all components in the system for compatibility. Testing under actual operating conditions is the only way to determine if acceptable service life will be achieved.

Fluid viscosity & filtration

Fluids with a viscosity between 20 - 43 cSt [100 - 200 S.U.S.] at operating temperature is recommended. Fluid temperature should also be maintained below 85° C [180° F]. It is also suggested that the type of pump and its operating specifications be taken into account when choosing a fluid for the system. Fluids with high viscosity can cause cavitation at the inlet side of the pump. Systems that operate over a wide range of temperatures may require viscosity improvers to provide acceptable fluid performance.

We recommend maintaining an oil cleanliness level of ISO 17-14 or better.

Installation & start-up

When installing a motor, it is important that the mounting flange of the motor makes full contact with the mounting surface of the application. Mounting hardware of the ap- propriate grade and size must be used. Hubs, pulleys, sprockets, and couplings must be properly aligned to avoid inducing excessive thrust or radial loads. Although the output device must fit the shaft snug, a hammer should never be used to install any type of output device onto the shaft. The port plugs should only be removed from the motor when the system connections are ready to be made. To avoid contamination, remove all matter from around the ports of the motor and the threads of the fittings. Once all system connections are made, it is recommended that the motor be run-in for 15-30 minutes at no load and half speed to remove air from the hydraulic system.

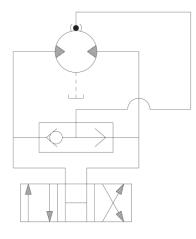
Motor protection

Over-pressurization of a motor is one of the primary causes of motor failure. To prevent these situations, it is necessary to provide adequate relief protection for a motor based on the pressure ratings for that particular model. For systems that may experience overrunning conditions, special precautions must be taken. In an overrunning condition, the motor functions as a pump and attempts to convert kinetic energy into hydraulic energy. Unless the system is properly configured for this condition, damage to the motor or system can occur. To protect against this condition a counterbalance valve or relief cartridge must be incorporated into the circuit to reduce the risk of over pressurization. If a relief cartridge is used, it must be installed upline of the motor, if not in the motor, to relieve the pressure created by the over-running motor. To provide proper motor protection for an over-running load application, the pressure setting of the pressure relief valve must not exceed the intermittent rating of the motor.

Hydraulic motor safety precaution

A hydraulic motor must not be used to hold a suspended load. Due to the necessary internal tolerances, all hydraulic motors will experience some degree of creep when a load induced torque is applied to a motor at rest. All applications that require a load to be held must use some form of mechanical brake designed for that purpose.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.



Motor/brake precaution

Caution! - The motors/brakes are intended to operate as static or parking brakes. System circuitry must be designed to bring the load to a stop before applying the brake.

Caution! - Because it is possible for some large displacement motors to overpower the brake, it is critical that the maximum system pressure be limited for these applications. Failure to do so could cause serious injury or death. When choosing a motor/brake for an application, consult the performance chart for the series and displacement chosen for the application to verify that the maximum operating pressure of the system will not allow the motor to produce more torque than the maximum rating of the brake. Also, it is vital that the system relief be set low enough to ensure that the motor is not able to overpower the brake.

To ensure proper operation of the brake, a separate case drain back to tank must be used. Use of the internal drain option is not recommended due to the possibility of return line pressure spikes. A simple schematic of a system utilizing a motor/brake is shown on page 4. Although maximum brake release pressure may be used for an application, a 34 bar [500 psi] pressure reducing valve is recommended to promote maximum life for the brake release piston seals. However, if a pressure reducing valve is used in a system which has case drain back pressure, the pressure reducing valve should be set to 34 bar [500 psi] over the expected case pressure to ensure full brake release. To achieve proper brake release operation, it is necessary to bleed out any trapped air and fill brake release ports. One or both of these ports may be used to release the brake in the unit. Motor/brakes should be configured so that the release ports are near the top of the unit in the installed position.

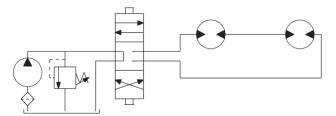
Figure 1: Typical motor/brake schematic

Once all system connections are made, one release port must be opened to atmosphere and the brake release line carefully charged with fluid until all air is removed from the line and motor/brake release cavity. When this has been accomplished the port plug or secondary release line must be reinstalled. In the event of a pump or battery failure, an external pressure source may be connected to the brake release port to release the brake, allowing the machine to be moved.

NOTE: It is vital that all operating recommendations be followed. Failure to do so could result in injury or death.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..


Motor Connections

Motor circuits

There are two common types of circuits used for connecting multiple numbers of motors – series connection and parallel connection.

Series connection

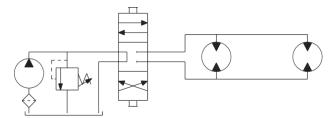
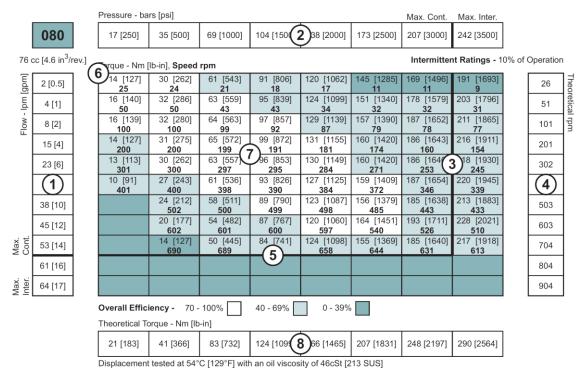

When motors are connected in series, the outlet of one motor is connected to the inlet of the next motor. This allows the full pump flow to go through each motor and provide maximum speed. Pressure and torque are distributed between the motors based on the load each motor is subjected to. The maximum system pressure must be no greater than the maximum inlet pressure of the first motor. The allowable back pressure rating for a motor must also be considered. In some series circuits the motors must have an external case drain connected. A series connection is desirable when it is important for all the motors to run at the same speed such as on a long line conveyor.

Figure 2: Series circuit

Parallel connection

In a parallel connection all of the motor inlets are connected. This makes the maximum system pressure available to each motor allowing each motor to produce full torque at that pressure. The pump flow is split between the individual motors according to their loads and displacements. If one motor has no load, the oil will take the path of least resistance and all the flow will go to that one motor. The others will not turn. If this condition can occur, a flow divider is recommended to distribute the oil and act as a differential.


Figure 3: Series circuit

NOTE: The motor circuits shown above are for illustration purposes only. Components and circuitry for actual applications may vary greatly and should be chosen based on the application.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

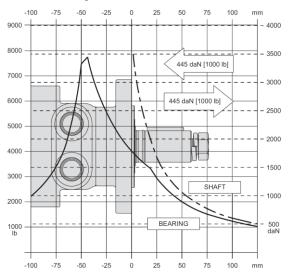
Product Testing

Performance testing is the critical measure of a motor's ability to convert flow and pressure into speed and torque. All product testing is conducted using a state-of-the-art test facility. This facility utilizes fully automated test equipment and custom designed software to provide accurate, reliable test data. Test routines are standardized, including test stand calibration and stabilization of fluid temperature and viscosity, to provide consistent data. The example below provides an explanation of the values pertaining to each heading on the performance chart.

- 1. Flow represents the amount of fluid passing through the motor during each minute of the test.
- 2. Pressure refers to the measured pressure differential between the inlet and return ports of the motor during the test.
- 3. The maximum continuous pressure rating and maxi- mum intermittent pressure rating of the motor are separated by the dark lines on the chart.
- 4. Theoretical RPM represents the RPM that the motor would produce if it were 100% volumetrically efficient. Measured RPM divided by the theoretical RPM gives the actual volumetric efficiency of the motor.
- 5. The maximum continuous flow rating and maximum intermittent flow rating of the motor are separated by the dark line on the chart.
- 6. Performance numbers represent the actual torque and speed generated by the motor based on the corresponding input pressure and flow. The numbers on the top row indicate torque as measured in Nm [lb-in], while the bottom number represents the speed of the output shaft.
- 7. Areas within the white shading represent maximum motor efficiencies.
- 8. Theoretical Torque represents the torque that the motor would produce if it were 100% mechanically efficient. Actual torque divided by the theoretical torque gives the actual mechanical efficiency of the motor.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Allowable bearing & shaft loading


This catalog provides curves showing allowable radial loads at points along the longitudinal axis of the motor. They are dimensioned from the mounting flange. Two capacity curves for the shaft and bearings are shown. A vertical line through the centerline of the load drawn to intersect the x-axis intersects the curves at the load capacity of the shaft and of the bearing.

In the example below the maximum radial load bearing rating is between the internal roller bearings illustrated with a solid line. The allowable shaft rating is shown with a dotted line.

The bearing curves for each model are based on laboratory analysis and testing results constructed at the organization. The shaft loading is based on a 3:1 safety factor and 330 Kpsi tensile strength. The allowable load is the lower of the curves at a given point. For instance, one inch in front of the mounting flange the bearing capacity is lower than the shaft capacity. In this case, the bearing is the limiting load. The motor user needs to determine which series of motor to use based on their application knowledge.

ISO 281 ratings vs. Manufacturers ratings

Published bearing curves can come from more than one type of analysis. The ISO 281 bearing rating is an international standard for the dynamic load rating of roller bearings. The rating is for a set load at a speed of 33 1/3 RPM for 500 hours (1 million revolutions). The standard was established to allow consistent comparisons of similar bearings between manufacturers. The ISO 281 bearing ratings are based solely on the physical characteristics of the bearings, removing any manufacturers specific safety factors or empirical data that influences the ratings.

Manufacturers' ratings are adjusted by diverse and systematic laboratory investigations, checked constantly with feedback from practical experience. Factors taken into account that affect bearing life are material, lubrication, cleanliness of the lubrication, speed, temperature, magnitude of the load and the bearing type.

The operating life of a bearing is the actual life achieved by the bearing and can be significantly different from the calculated life. Comparison with similar applications is the most accurate method for bearing life estimations.

Example load rating for mechanically retained needle roller bearings

Bearing Life $L_{10} =$	(C/P) ^p [10 ⁶ revolutions]
$L_{10} =$	nominal rating life
C =	dynamic load rating
P =	equivalent dynamic load
Life Exponent ^p =	10/3 for needle bearings

Bearing load multiplication factor table					
Rpm	Rpm Factor Rpm Fa				
50	1.23	500	0.62		
100	1.00	600	0.58		
200	0.81	700	0.56		
300	0.72	800	0.50		
400	0.66				

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

Vehicle drive calculations

When selecting a wheel drive motor for a mobile vehicle, a number of factors concerning the vehicle must be taken into consideration to determine the required maximum motor RPM, the maximum torque required and the maximum load each motor must support. The following sections contain the necessary equations to determine this criterion. An example is provided to illustrate the process.

Sample application (vehicle design criteria)

Vehicle description	4-wheel vehicle
Vehicle drive	2-wheel drive
GVW	1,500 lbs.
Weight over each drive wheel	425 lbs.
Rolling radius of tires	16 in.
Desired acceleration	0-5 mph in 10 sec.
Top speed	5 mph
Gradeability	20%
Worst working surface	poor asphalt

To determine maximum motor speed

 $RPM = \frac{2.65 \text{ x KPH x G}}{rm} \quad RPM = \frac{168 \text{ x MPH x G}}{ri}$

MPH = max. vehicle speed (miles/hr)

KPH = max. vehicle speed (kilometers/hr)

ri = rolling radius of tire (inches)

G= gear reduction ratio (if none, G=1)

rm = rolling radius of tire (meters)

Fyample	RPM – –	168 x 5 x 1	- 52 5
Ехатріс	$\mathbf{K}\mathbf{I}$ $\mathbf{W}\mathbf{I} = -$	16	- 52.5

To determine maximum torque requirement of motor

To choose a motor(s) capable of producing enough torque to propel the vehicle, it is necessary to determine the Total Tractive Effort (TE) requirement for the vehicle. To determine the total tractive effort, the following equation must be used:

TE = RR + GR + FA + DP (lbs or N)

Where:

- TE = Total tractive effort
- RR = Force necessary to overcome rolling resistance
- GR = Force required to climb a grade
- FA = Force required to accelerate
- DP = Drawbar pull required

The components for this equation may be determined using the following steps:

Step One: Determine Rolling Resistance

Rolling Resistance (RR) is the force necessary to

propel a vehicle over a particular surface. It is recommended that the worst possible surface type to be encountered by the vehicle be factored into the equation.

$$RR = \frac{GVW}{1000} \times R \text{ (lb or N)}$$

Where:

GVW = gross (loaded) vehicle weight (lb or kg) R = surface friction (value from Table 1)

Table 1: Rolling Resistance

Rolling Resistance
Concrete (excellent) 10
Concrete (good)15
Concrete (poor) 20
Asphalt (good)12
Asphalt (fair)17
Asphalt (poor)
Macadam (good) 15
Macadam (fair)
Macadam (poor)
Cobbles (ordinary) 55
Cobbles (poor)
Snow (2 inch)
Snow (4 inch)
Dirt (smooth)25
Dirt (sandy) 37
Mud37 to 150
Sand (soft)60 to 150
Sand (dune) 160 to 300

Step Two: Determine Grade Resistance

Grade Resistance (GR) is the amount of force necessary to move a vehicle up a hill or "grade." This calculation must be made using the maximum grade the vehicle will be expected to climb in normal operation.

To convert incline degrees to % Grade:

% Grade = [tan of angle (degrees)] x 100

$$GR = \frac{\% \text{ Grade}}{100} \times \text{GVW(lb or N)}$$
Example
$$GR = \frac{20}{100} \times 1500 \text{ lbs} = 300 \text{ lbs}$$

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Step Three: Determine Acceleration Force

Acceleration Force (FA) is the force necessary to accelerate from a stop to maximum speed in a desired time.

 $FA = \frac{MPH x GVW (lb)}{22 x t} \qquad FA = \frac{KPH x GVW (N)}{35.32 x t}$

Where:

t = time to maximum speed (seconds)

Example
$$FA = \frac{5 \text{ x } 1500 \text{ lbs}}{22 \text{ x } 10} = 34$$

Step Four: Determine Drawbar Pull

Drawbar Pull (DP) is the additional force, if any, the vehicle will be required to generate if it is to be used to tow other equipment. If additional towing capacity is required for the equipment, repeat steps one through three for the towable equipment and sum the totals to determine DP.

Step Five: Determine Total Tractive Effort

The Tractive Effort (TE) is the sum of the forces calculated in steps one through three above. On low-speed vehicles, wind resistance can typically be neglected. However, friction in drive components may warrant the addition of 10% to the total tractive effort to insure acceptable vehicle performance.

TE = RR + GR + FA + DP (lb or N)

Example TE = 33 + 300 + 34 + 0 (lbs) = 367 lbs

Step Six: Determine Motor Torque

The Motor Torque (T) required per motor is the Total Tractive Effort divided by the number of motors used on the machine. Gear reduction is also factored into account in this equation.

$$T = \frac{TE \times ri}{M \times G} lb - in per motor$$
$$T = \frac{TE \times rm}{M \times G} Nm per motor$$

Where:

M = number of driving motors

Example
$$T = \frac{367 \times 16}{2 \times 1}$$
 lb-in/motor = 2936 lb-in

Step Seven: Determine Wheel Slip

To verify that the vehicle will perform as designed in regard to tractive effort and acceleration, it is necessary to calculate wheel slip (TS) for the vehicle. In special cases, wheel slip may actually be desirable

to prevent hydraulic system overheating and component breakage should the vehicle become stalled.

$$TS = \frac{W \times f \times ri}{G} (lb - in \text{ per motor})$$
$$TS = \frac{W \times f \times rm}{G} (N - m \text{ per motor})$$

Where:

f = coefficient of friction (see table 2)

W = loaded vehicle weight over driven wheel (lb or N)

Example	$TS = \frac{42}{3}$	<u>5 x .06 x 16</u> 1	lb-in/motor = 4080 lbs	
---------	---------------------	--------------------------	------------------------	--

Table 2: Coefficient of friction (f)

Coefficient of friction (f)
Steel on steel
Rubber tire on dirt0.5Rubber tire on a hard surface0.6 - 0.8
Rubber tire on cement0.7

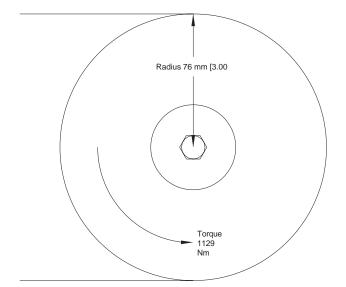
To determine radial load capacity requirement of motor

When a motor used to drive a vehicle has the wheel or hub attached directly to the motor shaft, it is critical that the radial load capabilities of the motor are sufficient to support the vehicle. After calculating the Total Ra- dial Load (RL) acting on the motors, the result must be compared to the bearing/shaft load charts for the chosen motor to determine if the motor will provide acceptable load capacity and life.

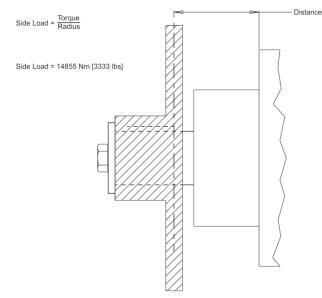
$$RL = \sqrt{W^2 + \left(\frac{T}{ri}\right)^2} \ lb \qquad RL = \sqrt{W^2 + \left(\frac{T}{rm}\right)^2} \ kg$$
Example
$$RL = \sqrt{425^2 + \left(\frac{2936}{16}\right)^2} \ lbs$$

Once the maximum motor RPM, maximum torque requirement, and the maximum load each motor must support have been determined, these figures may then be compared to the motor performance charts and to the bearing load curves to choose a series and displacement to fulfill the motor requirements for the application

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


WHITE | 13

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

Induced side load

In many cases, pulleys or sprockets may be used to transmit the torque produced by the motor. Use of these components will create a torque induced side load on the motor shaft and bearings. It is important that this load be taken into consideration when choosing a motor with sufficient bearing and shaft capacity for the application.

To determine the side load, the motor torque and pulley or sprocket radius must be known. Side load may be calculated using the formula below. The distance from the pulley/sprocket centerline to the mounting flange of the motor must also be determined. These two figures may then be compared to the bearing and shaft load curve of the desired motor to determine if the side load falls within acceptable load ranges.

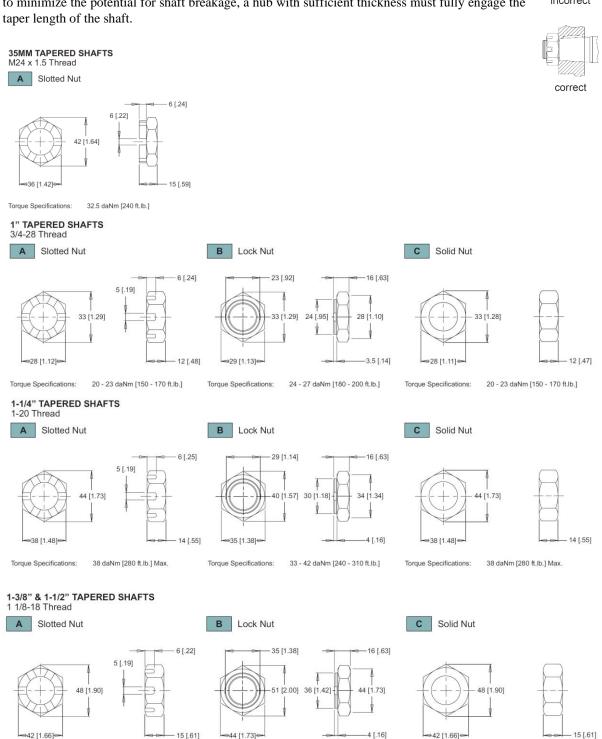
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Hydraulic Equations

Multiplication Factor	Abbrev.	Prefix]	
10 ¹²	Т	tera	1	
10 ⁹	G	giga		
10 ⁶	М	mega		
10 ³	K	kilo		
10 ²	h	hecto		
10 ¹	da	deka		
10-1	d	deci		
10-2	С	centi		
10 ⁻³	m	milli		
10-6	u	micro		
10 ⁻⁹	n	nano		
10-12	р	pico		
10 ⁻¹⁵	f	femto		
10 ⁻¹⁸	а	atto		
Theo. Speed (RPM) = $\frac{1000 \text{ x LPM}}{\text{Displacement (cm^3/rev)}}$ or $\frac{231 \text{ x GPM}}{\text{Displacement (in^3/rev)}}$				
Theo. Torque (lb – in) = $\frac{\text{Bar x Disp.}(cm^3/\text{rev})}{20 \text{ pi}}$ or $\frac{\text{PSI x Displacement (in}^3/\text{rev})}{6.28}$				
Powor in (HD) -	Power in (HP) = $\frac{\text{Bar x LPM}}{600}$ or $\frac{\text{PSI x GPM}}{1714}$			
Power out (HP) = $\frac{\text{Torque (Nm)x RPM}}{9543}$ or $\frac{\text{Torque (lb - in)x RPM}}{63024}$				

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..


Shaft nut information

Precaution

The tightening torques listed with each nut should only be used as a guideline. Hubs may require higher or lower tightening torque depending on the material. Consult the hub manufacturer to obtain recommended tightening torque. To maximize torque transfer from the shaft to the hub, and to minimize the potential for shaft breakage, a hub with sufficient thickness must fully engage the

41 - 54 daNm [300 - 400 ft.lb.] Torque Specifications:

Torque Specifications:

34 - 48 daNm [250 - 350 ft.lb.]

41 - 54 daNm [300 - 400 ft.lb.] Torque Specifications:

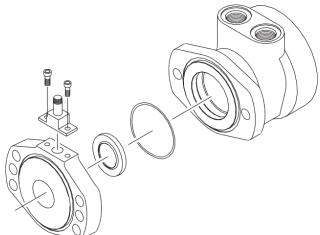
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed

Chapter 2

Optional Motor Features

Topics:

- Optional Motor Features
- Speed Sensors
- Free turning rotor
- Internal drain
- Hydraulic Declutch
- Valve cavity
- Slinger seal


WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Speed Sensors

We offer both single and dual element speed sensor options providing a number of benefits to users by incorporating the latest advancements in sensing technology and materials. The 700 & 800 series motors single element sensors provide 60 pulses per revolution with the dual element providing 120 pulses per revolution, with all other series providing 50 & 100 pulses respectively. Higher resolution is especially beneficial for slow speed applications, where more information is needed for smooth and accurate control. The dual sensor option also provides a direction signal allowing end-users to monitor the direction of shaft rotation.

Unlike competitive designs that breach the high-pressure area of the motor to add the sensor, the speed sensor option utilizes an add-on flange to locate all sensor components outside the high-pressure operating environment. This eliminates the potential leak point common to competitive designs. Many improvements were made to the sensor flange including changing the material from cast iron to acetal resin, incorporating a Buna-N shaft seal internal to the flange, and providing a grease zerk, which allows the user to fill the sensor cavity with grease. These improvements enable the flange to withstand the rigors of harsh environments.

Another important feature of the new sensor flange is that it is self-centering, which allows it to remain concentric to the magnet rotor. This produces a consistent mounting location for the new sensor module, eliminating the need to adjust the air gap between the sensor and magnet rotor. The o- ring sealed sensor module attaches to the sensor flange with two small screws, allowing the sensor to be serviced or upgraded in the field in under one minute. This feature is especially valuable for mobile applications where machine downtime is costly. The sensor may also be serviced without exposing the hydraulic circuit to the atmosphere. Another advantage of the selfcentering flange is that it allows users to rotate the

sensor to a location best suited to their application. This feature is not available on competitive designs, which fix the sensor in one location in relationship to the motor mounting flange.

Features / benefits sensor options

- Grease fitting allows sensor cavity to be filled with grease for additional protection.
- Internal extruder seal protects against environmental elements.
- M12 or weather pack connectors provide installation flexibility.
- Dual element sensor provides up to 120 pulses per revolution and directional sensing.
- Modular sensor allows quick and easy servicing.
- Acetal resin flange is resistant to moisture, chemicals, oils, solvents and greases.
- Self-centering design eliminates need to set magnet- to-sensor air gap.
- Protection circuitry

Sensor options

Z - **4-pin M12 male connector** - This option has 50 pulses per revolution on all series except the DT which has 60 pulses per revolution. This option will not detect direction.

Y - **3-pin male weatherpack connector*** - This option has 50 pulses per revolution on all series except the DT which has 60 pulses per revolution. This option will not detect direction.

X - 4-pin M12 male connector - This option has 100 pulses per revolution on all series except the DT which has 120 pulses per revolution. This option will detect direction.

W - 4-pin male weatherpack connector* - This option has 100 pulses per revolution on all series except

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp z o.o..

the DT which has 120 pulses per revolution. This option will detect direction.

*These options include a 610mm [2 ft] cable.

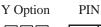
Single element sensor - Y & Z

Supply voltages	7.5-24 Vdc
Maximum output off voltage	V
Maximum continuous output current	
Signal levels (low, high)0.8 to su	pply voltage
Operating Temp30°C to 83°C [-22	°F to 181°F]

Dual element sensor - X & W

Supply voltages.....7.5-18 Vdc Maximum output off voltage.....V Maximum continuous output current......< 20 ma Signal levels (low, high).....0.8 to supply voltage Operating Temp-30°C to 83°C [-22°F to 181°F]

Sensor connectors


X Option PIN

1	positive	brown or red
2	n/a	white
3	negative	blue
4	pulse out	black

Z Option	PI	N
~	1	

7 0......

~	1	positive	brown or red
$\left(\left(\begin{array}{c} \\ \\ \end{array} \right) \right)$	2	direction out	white
	3	negative	blue
	4	pulse out	black

	А	positive	brown or red
	В	negative	blue
	С	pulse out	black
<u>B</u> A	D	n/a	white

W Option PIN

	А	positive	brown or red
	В	negative	blue
	С	pulse out	black
<u>D C B A</u>	D	direction out	white

The protection circuitry

The single element sensor has been improved and in- corporates protection circuitry to avoid electrical damage caused by:

- reverse battery protection •
- overvoltage due to power supply spikes and •
- surges (60 Vdc max.) •
- power applied to the output lead

The protection circuit feature will help "save" the sensor from damage mentioned above caused by:

- faulty installation wiring or system repair
- wiring harness shorts/opens due to equipment failure or harness damage resulting from accidental conditions (i.e. severed or grounded wire, ice, etc.)
- power supply spikes and surges caused by other electrical/electronic components that may be • intermittent or damaged and "loading down" the system.

While no protection circuit can guarantee against any and all fault conditions. The single element sensor from us with protection circuitry is designed to handle potential hazards commonly seen in real world applications.

Unprotected versions are also available for operation at lower voltages down to 4.5V.

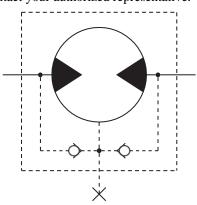
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. Z 0.0..

Free turning rotor

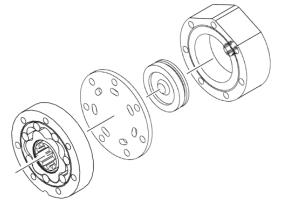
The 'AC' option or "Free turning" option refers to a specially prepared rotor assembly. This rotor assembly has increased clearance between the rotor tips and rollers allowing it to turn more freely than a standard rotor assembly. For spool valve motors, additional clearance is also provided between the shaft and housing bore. The 'AC' option is available for all motor series and displacements.

There are several applications and duty cycle conditions where 'AC' option performance characteristics can be beneficial. In continuous duty applications that require high flow/high rpm operation, the benefits are twofold. The additional clearance helps to minimize internal pressure drop at high flows. This clearance also provides a thicker oil film at metal-to-metal contact areas and can help extend the life of the motor in high rpm or even over speed conditions. The 'AC' option should be considered for applications that require continuous operation above 57 LPM [15 GPM] and/ or 300 rpm. Applications that are subject to pressure spikes due to frequent reversals or shock loads can also benefit by specifying the 'AC' option. The additional clearance serves to act as a buffer against spikes, allowing them to be bypassed through the motor rather than being absorbed and transmitted through the drive link to the output shaft. The trade-off for achieving these benefits is a slight loss of volumetric efficiency at high pressures.


Internal drain

The internal drain is an option available on all HB, DR, and DT Series motors, and is standard on all WP, WR, WS, and D9 series motors. Typically, a separate drain line must be installed to direct case leakage of the motor back to the reservoir when using a HB, DR, or DT Series motor. However, the internal drain option eliminates the need for a separate drain line through the installation of two check valves in the motor end cover. This simplifies plumbing requirements for the motor.

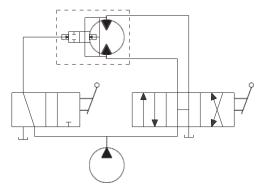
The two check valves connect the case area of the motor to each port of the end cover. During normal motor operation, pressure in the input and return lines of the motor close the check valves. However, when the pressure in the case of the motor is greater than that of the return line, the check valve between the case and low-pressure line opens, allowing the case leakage to flow into the return line. Since the operation of the check valves is dependent upon a pressure differential, the internal drain option operates in either direction of motor rotation.


Although this option can simplify many motor installations, precautions must be taken to insure that return line pressure remains below allowable levels (see table below) to insure proper motor operation and life. If return line pressure is higher than allowable, or experiences pressure spikes, this pressure may feed back into the motor, possibly causing catastrophic seal failure. Installing motors with internal drains in series is not recommended unless overall pressure drop over all motors is below the maximum allowable backpressure as listed in the chart below. If in doubt, contact your authorized representative.

Maxim	Maximum allowable back pressure											
Series	Cont. bar [psi]	Inter. bar [psi]										
HB	69 [1000]	103 [1500]										
DR	69 [1000]	103 [1500]										
DT	21 [300]	34 [500]										
D9	21 [300]	21 [300]										
Brakes	34 [500]	34 [500]										

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Hydraulic Declutch

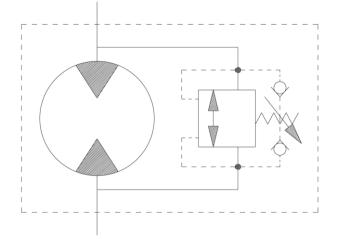

The declutch or 'AE' option, available on the RE and CE Series motors, has been specifically designed for applications requiring the motor to have the ability to "freewheel" when not pressurized. By making minor changes to internal components, the torque required to turn the output shaft is minimal. Selection of this option allows freewheeling speeds up to 1,000 RPM* depending on the displacement of the motor and duty cycle of the application.

To enable the motor to perform this function, the standard rotor assembly is replaced with a freeturn rotor assembly. Next, the standard balance plate and endcover is replaced with a special wear plate and ported endcover. The wear plate features seven holes that connect the stator pockets to each other. The ported endcover features a movable piston capable of sealing the seven holes in the wear plate.

When standard motor function is required, pressure is supplied to the endcover port, moving the piston against the wear plate. This action seals the seven holes allowing the motor to function as normal. However, when pressure is removed from the endcover port, the pressure created by the turning rotor assembly pushes the piston away from the wear plate, opening the rotor pockets to each other. In this condition, oil may circulate freely within the rotor and endcover assemblies, allowing the rotor assembly to rotate freely within the motor.

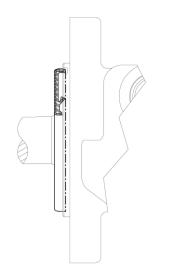
This option is especially useful in applications ranging from winch drives to towable wheel drives. Depending on the valves and hydraulic circuitry, operation of the freewheel function may be manually or automatically selected. A basic schematic is shown to the right.

• The 1,000 RPM rating was based on smaller displacement options with forced flow flushing through the motor to provide cooling.



WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Valve cavity


The valve cavity option provides a cost-effective way to incorporate a variety of cartridge valves integral to the motor. The valve cavity is a standard 10 series (12 series on the 800 series motor) 2-way cavity that accepts numerous cartridge valves, including overrunning check valves, relief cartridges, flow control valves, pilot operated check fuses, and high-pressure shuttle valves. Installation of a relief cartridge into the cavity provides an extra margin of safety for applications encountering frequent pressure spikes. Relief cartridges from 69 to 207 bar [1000 to 3000 psi] may also be factory installed.

For basic systems with fixed displacement pumps, either manual or motorized flow control valves may be installed into the valve cavity to provide a simple method for con- trolling motor speed. It is also possible to incorporate the speed sensor option and a programmable logic controller with a motorized flow control valve to create a closed loop, fully automated speed control system. For motors with internal brakes, a shuttle valve cartridge may be installed into the cavity to provide a simple, fully integrated method for supplying release pressure to the pilot line to actuate an integral brake. To discuss other alternatives for the valve cavity option, contact an authorized distributor.

Slinger seal

Slinger seals are available on select series offered by us. Slinger seals offer extended shaft/shaft seal protection by preventing a buildup of material around the circumference of the shaft which can lead to premature shaft seal failures. The slinger seals are designed to be larger in diameter than competitive products, providing greater surface speed and 'slinging action'.

Slinger seals are also available on 4-hole flange mounts on select series. Contact a Customer Service Representative for additional information.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Chapter 3

Heavy duty hydraulic motors - RE

Topics:

- RE product Line Introduction
- RE Displacement Performance
- 505/506 Series Housing
- 505/506 Series Technical Information
- 505/506 Series Shaft
- 505/506 Series Ordering Information
- 520/521 Series Housing
- 520/521 Series Technical Information
- 520/521 Series Shaft
- 520/521 Series Ordering Information
- 530/531 Series Housing
- 530/531 Series Technical Information
- 530/531 Series Shaft
- 530/531 Series Ordering Information
- 535/536 Series Housing
- 535/536 Series Technical Information
- 535/536 Series Shaft
- 535/536 Series Ordering Information
- 540/541 Series Housing
- 540/541 Series Hub Option Details
- 540/541 Series Technical Information
- 540/541 Series Ordering Information

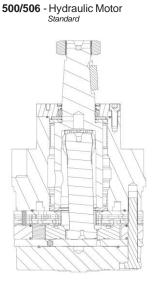
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

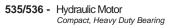
All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

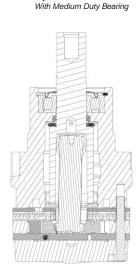
RE product Line Introduction

Overview

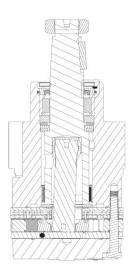
RE Series motors offer the perfect compromise between price and performance by producing work horse power at a reasonable cost. Although these motors perform well in a wide range of applications, they are especially suited for low flow, high pressure applications. During startup, pressure causes the balance plate to flex toward the rotor, vastly improving volumetric efficiency. As the motor reaches operating pressure, the balance plate relaxes, allowing the rotor to turn freely which translates into higher mechanical efficiencies. Transmitting this power to the output shaft is the most durable drive link in its class. Four bearing options, combined with standard mounting flanges and output shafts, allow the motor to be configured to suit nearly any application.

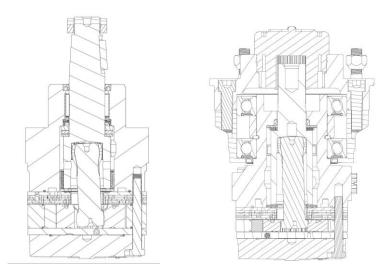

Features / Benefits


- High Pressure Shaft Seal offers superior seal life and performance and eliminates need for case drain.
- Three Bearing Options allow load carrying capability of motor to be matched to application.


520/521 - Hydraulic Motor

- Heavy-Duty Drive Link is the most durable in its class and receives full flow lubrication to provide long life.
- Valve-In-Rotor Design provides cost effective, efficient distribution of oil and reduces overall motor length.
- Pressure-Compensated Balance Plate improves volumetric efficiency at low flows and high pressure.


Series Descriptions


640 - Hydraulic Motor With Wheel Hub

With Heavy Duty Bearing

530/531 - Hydraulic Motor

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

Typical Applications

Medium-duty wheel drives, augers, mixers, winch drives, swing drives, grapple heads, feed rollers, broom drives, chippers, mining equipment, forestry equipment and more

Code	Displacement cm ³ [in ³ /rev]	Max. S	peed rpm		ow Ipm om]		rque Nm -in]	Мах	. Pressure [psi]	bar
	cui [iii /iev]	cont.	inter.	cont.	inter.	cont.	inter.	cont.	inter.	peak
120	121 [7.4]	360	490	45 [12]	61 [16]	327 [2900]	383 [3400]	207 [3000]	241 [3500]	276 [4000]
160	162 [9.9]	370	470	61 [16]	76 [20]	475 [4200]	542 [4800]	207 [3000]	241 [3500]	276 [4000]
200	204 [12.4]	300	370	68 [18]	83 [22]	542 [4800]	633 [5600]	207 [3000]	241 [3500]	276 [4000]
230	232 [14.2]	260	320	68 [18]	83 [22]	644 [5700]	712 [6300]	207 [3000]	241 [3500]	276 [4000]
260	261 [15.9]	260	350	76 [20]	91 [24]	712 [6300]	791 [7000]	207 [3000]	241 [3500]	276 [4000]
300	300 [18.3]	250	320	83 [22]	95 [25]	825 [7300]	938 [8300]	207 [3000]	241 [3500]	276 [4000]
350	348 [21.2]	220	270	83 [22]	95 [25]	921 [8150]	1045 [9250]	207 [3000]	241 [3500]	276 [4000]
375	375 [22.8]	200	250	76 [20]	91 [24]	1006 [8900]	1158 [10250]	207 [3000]	241 [3500]	276 [4000]
470	465 [28.3]	160	200	76 [20]	91 [24]	1096 [9700]	1184 [10475]	172 [2500]	189 [2750]	207 [3000]
540	536 [32.7]	140	170	76 [20]	91 [24]	983 [8700]	1243 [11000]	138 [2000]	173 [2500]	207 [3000]
620	631 [38.5]	120	150	76 [20]	91 [24]	1014 [8976]	1291 [11421]	121 [1750]	155 [2250]	173 [2500]
750	748 [45.6]	100	130	76 [20]	91 [24]	1062 [9400]	1237 [10950]	103 [1500]	121 [1750]	138 [2000]

Specifications

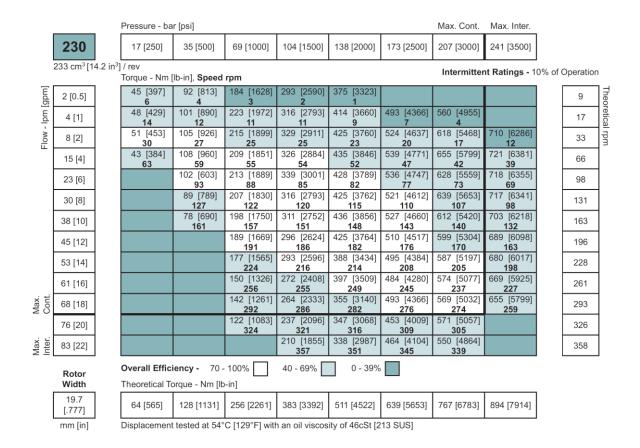
Performance data is typical. Performance of production units varies slightly from one motor to another. Running at intermittent ratings should not exceed 10% of every minute of operation.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

RE Displacement Performance


		Pressure	e - bar [psi]					Max. Cont.	Max. Inter.			
	120	17 [25	50] 35	5 [500]	69 [1000]	104 <mark>[</mark> 1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
1	121 cm ³ [7.4		- Nm [lb-in]	Speed	rom				Intermitten	nt Ratings - 10	0% of	Operation	
[md	2 [0.5]	21 [1	87] 51	[448]	97 [859]	140 [1239]						16	The
pm [g	4 [1]	24 [2 26	215] 54	13 [474] 25	11 111 [986] 25	8 162 [1429] 20	225 [1991] 13					32	Theoretical
Flow - Ipm [gpm]	8 [2]	20		25 7 [500] 58	118 [1043] 53	176 [1554] 51	226 [1997] 44	271 [2400] 40	302 [2673] 35	343 [3036] 27		63	al rpm
ш	15 [4]			[479] 111	116 [1030] 106	186 [1642] 97	237 [2094] 93	278 [2459] 89	335 [2964] 85	359 [3179] 79		125	_
	23 [6]		49	9 [433] 174	116 [1023] 167	168 [1483] 155	232 [2051] 150	279 [2467] 144	328 [2903] 139	360 [3185] 137		188	
	30 [8]				111 [984] 245	169 [1497] 214	223 [1973] 205	283 [2505] 200	326 [2884] 197	385 [3404] 188		250	
	38 [10]				104 [923] 294	166 [1469] 281	218 [1930] 269	272 [2411] 261	325 [2878] 250	385 [3404] 242		313	
Max. Cont.	45 [12]				99 [872] 358	161 [1428] 344	217 [1918] 331	276 [2444] 326	321 [2839] 321	385 [3403] 304		375	
	53 [14]				91 [807] 415	155 [1372] 413	208 [1845] 398	267 [2363] 391	338 [2992] 369			438	
Max. Inter.	61 [16]				84 [745] 487	145 [1283] 475	211 [1864] 457	272 [2403] 447	327 [2897] 427			500	,
	Rotor		Efficiency			40 - 69%	0 - 39%						
	Width 13.8		ical Torque		-								
	[.542]	33 [29	-	7 [589]	133 [1178]	200 [1768]	266 [2357]	333 [2946]	399 [3535]	466 [4124]			
	mm [in]	Displace	ement teste	ed at 54°	C [129°F] with	i an oil viscos	ity of 46cSt [2	13 505]					
	100		re - bar [ps	-					Max. Cont.	Max. Inter.	1		
	160	17 [2	250] 3	5 [500]	69 [1000]	104 [1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
_	162 cm ³ [9.9	Torque	- Nm [lb-ir	<u> </u>					Intermitte	nt Ratings - 1	0% of	Operation	1
Flow - Ipm [gpm]	2 [0.5]	37 [7	7 [685] 3	149 [1323] 3	223 [1977] 3	2	349 [3088] 1				12	Theor
- Ibm	4 [1]	30 [2	1	0 [704] 18	164 [1448] 17	244 [2158] 16	324 [2865] 14	378 [3344] 13	442 [3909] 9			24	Theoretical
Flow	8 [2]	36 [5	0 [711] 43	161 [1423] 41	242 [2143] 39	37	379 [3350] 35	481 [4258] 32	551 [4880] 28		47	rpm
	15 [4]	39 [92	2	5 [664] 90	171 [1510] 86	253 [2241] 84	321 [2838] 82	379 [3351] 80	76	516 [4569] 72		94	
	23 [6]			1 [631] 138	158 [1395] 134	235 [2078] 131	317 [2806] 127	389 [3447] 122	462 [4088] 121	518 [4586] 118		140	
	30 [8]			7 [596] 186	164 [1449] 182	236 [2090] 179	173	170	456 [4033] 167	513 [4537] 163		187	
	38 [10]			2 [640] 232	149 [1323] 230	229	222	376 [3329] 220	213	207		234	
	45 [12]		6	7 [596] 279	144 [1275] 279	226 [1998] 272	304 [2689] 270	369 [3270] 264	440 [3890] 255	497 [4397] 247		280	
											1	327	
ند .	53 [14]				135 [1190] 326	228 [2022] 323	310 [2739] 317	375 [3317] 311	457 [4040] 304	541 [4789] 299	4	021	-
Max. Cont.	53 [14]				326 123 [1087] 372	323 213 [1889] 372	317 298 [2634] 364	311 368 [3253] 361	304 435 [3847] 357			374	
	53 [14] 61 [16] 68 [18]				326 123 [1087] 372 108 [952] 419	323 213 [1889] 372 199 [1764] 417	317 298 [2634] 364 283 [2501] 416	311 368 [3253] 361 362 [3201] 407	304 435 [3847] 357 419 [3708] 401	299 502 [4439]		<u> </u>	-
Max. Max. Inter. Cont.	53 [14] 61 [16] 68 [18]				326 123 [1087] 372 108 [952]	323 213 [1889] 372 199 [1764]	317 298 [2634] 364 283 [2501]	311 368 [3253] 361 362 [3201]	304 435 [3847] 357 419 [3708] 401	299 502 [4439]		374	-
	53 [14] 61 [16] 68 [18]		I Efficienc	-	326 123 [1087] 372 108 [952] 419 105 [929] 466 - 100%	323 213 [1889] 372 199 [1764] 417 195 [1726]	317 298 [2634] 364 283 [2501] 416 280 [2476]	311 368 [3253] 361 362 [3201] 407 349 [3092] 453	304 435 [3847] 357 419 [3708] 401 453 [4008]	299 502 [4439]		374 420	-
	53 [14] 61 [16] 68 [18] 76 [20] Rotor		tical Torqu	-	326 123 [1087] 372 108 [952] 419 105 [929] 466 - 100%	323 213 [1889] 372 199 [1764] 417 195 [1726] 465	317 298 [2634] 364 283 [2501] 416 280 [2476] 462	311 368 [3253] 361 362 [3201] 407 349 [3092] 453	304 435 [3847] 357 419 [3708] 401 453 [4008]	299 502 [4439]]	374 420	-

▶ Performance data is typical. Performance of production units varies slightly from one motor to another. Operating at maximum continuous pressure and maximum continuous flow simultaneously is not recommended. For additional information on product testing refer to page 6.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

		Pressure - ba	ır [psi]					Max. Cont.	Max. Inter.			
	200	17 [250]	35 [500]	69 [1000]	104 [1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
	204 cm ³ [12	/ rev Torque - Nm [(lb-in), Speed	rpm				Intermitter	nt Ratings - 10	0% of (Operation	ı
[md	2 [0.5]	40 [358]	91 [808]	133 [1181]	294 [2602]	375 [3323]					10] <u></u>
Flow - Ipm [gpm]	4 [1]	7 43 [376]	4 85 [753]	4 200 [1769]	4 276 [2442]	3 373 [3304]	442 [3915]	526 [4656]			19	Theoretical rpm
al - wo	8 [2]	16 44 [385]	13 93 [851]	12 195 [1727]	11 299 [2646]	10 374 [3311]	9 461 [4079]	6 542 [4792]	616 [5451]		38	al rp
Flo		34 39 [347]	31 94 [834]	29 198 [1752]	27 305 [2701]	27 401 [3549]	25 477 [4222]	23 544 [4818]	20 629 [5568]		75	ł
	15 [4]	72	69 82 [724]	67 191 [1694]	63 284 [2518]	60 389 [3446]	58 463 [4098]	55 553 [4894]	51 636 [5628]		75	-
	23 [6]		82 [724] 111	191 [1694] 109	284 [2518] 107	389 [3446] 103	463 [4098] 100	553 [4894] 99	030 [5028] 90		112	
	30 [8]		80 [704] 148	188 [1661] 145	285 [2518] 141	402 [3556] 136	458 [4053] 134	543 [4802] 130	628 [5554] 124		150]
	38 [10]		66 [581] 185	180 [1592] 181	276 [2445] 176	364 [3224] 173	458 [4051] 170	535 [4737] 164	615 [5441] 160		187	1
	45 [12]			165 [1462] 221	261 [2312] 214	362 [3200] 210	450 [3982] 207	535 [4731] 198	618 [5471] 196		224	1
	53 [14]			150 [1328]	273 [2413]	368 [3253]	449 [3975]	558 [4936]	602 [5328]		261	1
	61 [16]			257 134 [1183]	256 253 [2242]	247 335 [2969]	244 435 [3850]	241 524 [4639]	235 598 [5292]		299	1
Max. Cont.	68 [18]			296 121 [1068]	292 232 [2056]	284 339 [3003]	277 416 [3686]	273 512 [4532]	269 599 [5299]		336	1
≊ö	00[10]			334 110 [970]	330	327	320	313	308			-
	76 [20]			372	206 [1823] 372	308 [2725] 365	401 [3552] 357	507 [4484] 352			373	
Max. Inter.	83 [22]				191 [1689] 407	285 [2520] 403	379 [3353] 397	486 [4303] 388			410	1
	Rotor	Overall Effici	iency - 70 -	100%	40 - 69%	0 - 39%	_					
	Width	Theoretical To	orque - Nm [lb	-in]		-						
	17.3 [.682]	56 [494]	112 [987]	223 [1975]	335 [2962]	446 [3949]	558 [4936]	669 [5924]	781 [6911]			
	mm [in]	Displacement	t tested at 54°	C [129°F] with	n an oil viscos	ity of 46cSt [2	13 SUS]					

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

WHITE 29

			Pressure - ba	r [psi]					Max. Cont.	Max. Inter.			
	260		17 [250]	35 [500]	69 [1000]	104 [1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
	261 cm ³ [1		/ rev Torque - Nm [lb-in], Speed	rpm				Intermitter	nt Ratings - 1	0% of	Operatior	۱
[mdg	2 [0.5]]	49 [432] 5	112 [989] 2								8	Theo
Flow - Ipm [gpm]	4 [1]		54 [475] 12	113 [998] 11	240 [2125] 10	365 [3230] 9	478 [4227] 8	578 [5112] 7	648 [5736] 5			15	Theoretical rpm
Flow .	8 [2]		54 [474] 27	115 [1021] 25	247 [2184] 24	367 [3244] 22	488 [4318] 21	591 [5230] 19	703 [6223] 16			30	rpm
_	15 [4]		49 [429] 57	114 [1010] 55	261 [2307] 51	363 [3214] 51	486 [4300] 48	595 [5268] 46	697 [6171] 43	807 [7143] 39		59	
	23 [6]		45 [397] 86	115 [1016] 83	236 [2090] 80	364 [3221] 78	497 [4398] 76	590 [5225] 71	721 [6379] 68	802 [7096] 63		88	
	30 [8]			94 [833] 114	227 [2008] 109	348 [3078] 109	477 [4224] 105	592 [5239] 101	692 [6128] 96	794 [7027] 88		117	
	38 [10]			85 [752] 145	231 [2044] 144	340 [3013] 141	470 [4155] 138	585 [5180] 133	685 [6063] 127	796 [7048] 119		146	
	45 [12]			78 [692] 173	217 [1919] 173	354 [3135] 168	464 [4108] 166	567 [5018] 161	672 [5945] 153	802 [7095] 144		175	
	53 [14]			64 [563] 202	198 [1754] 202	326 [2886] 200	445 [3941] 196	568 [5026] 184	668 [5908] 181	765 [6771] 176		204]
	61 [16]				182 [1608] 231	299 [2644] 229	448 [3965] 221	552 [4884] 219	651 [5763] 216	752 [6659] 209		233	
	68 [18]				160 [1417] 261	304 [2693] 261	417 [3690] 256	550 [4870] 247	643 [5689] 240	740 [6551] 232		262]
Max. Cont.	76 [20]				136 [1204] 290	278 [2460] 289	391 [3464] 285	521 [4614] 277	636 [5628] 274	736 [6516] 263		291]
	83 [22]				132 [1168] 319	263 [2325] 319	374 [3314] 315	512 [4535] 311	615 [5442] 301			320]
Max. Inter.	91 [24]				82 [722] 348	227 [2009] 347	361 [3190] 345	496 [4386] 340				349	
	Rotor Width		Overall Effici		100% 🗌	40 - 69%	0 - 39%						
	22.1 [.872]		72 [633]	143 [1266]	286 [2532]	429 [3798]	572 [5064]	715 [6330]	858 [7596]	1001 [8861]			

72 [633] 143 [1266] 286 [2532] 429 [3798] 572 [5064] 715 [6330] 858 [7596] 1001 [8861]

Displacement tested at 54°C [129°F] with an oil viscosity of 46cSt [213 SUS]

mm [in]

		Pressure - ba	r [psi]					Max. Cont.	Max. Inter.			
	300	17 [250]	35 [500]	69 [1000]	104 [1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
	300 cm ³ [1	/ rev Torque - Nm [[lb-in], Speed	rpm				Intermitter	nt Ratings - 1	0% of C)peratior	ı
[mdb	2 [0.5]	51 [452] 3	95 [839] 1							[7	Theo
] md	4 [1]	63 [557] 11	145 [1282] 10	302 [2675] 9	433 [3829] 8	510 [4513] 7	627 [5552] 4				<mark>1</mark> 3	Theoretical rpm
Flow - lpm [gpm]	8 [2]	62 [551] 22	158 [1400] 20	308 [2722] 19	437 [3866] 19	571 [5056] 16	679 [6011] 13	768 [6796] 9	830 [7346] 5	Ì	26	l rpm
ш	15 [4]	66 [588] 48	145 [1281] 47	316 [2793] 45	430 [3805] 43	577 [5107] 38	680 [6015] 33	820 [7258] 28	908 [8040] 21	ĺ	51	
	23 [6]	58 [511] 75	140 [1241] 75	290 [2566] 72	424 [3755] 69	546 [4830] 65	690 [6105] 57	801 [7088] 49	946 [8372] 40	ĺ	76	1
	30 [8]	46 [405] 100	128 [1136] 100	305 [2699] 99	391 [3460] 96	571 [5056] 87	700 [6199] 82	826 [7313] 71	930 [8233] 62	Ì	101	1
	38 [10]		111 [981] 125	282 [2493] 124	409 [3623] 121	503 [4447] 115	683 [6043] 106	794 [7028] 98	919 [8131] 88		127	1
	45 [12]		92 [814] 150	261 [2313] 150	388 [3435] 148	472 [4177] 143	641 [5676] 133	783 [6927] 122	881 [7794] 113		152]
	53 [14]		77 [684] 176	245 [2165] 175	391 [3464] 175	530 [4687] 173	661 [5848] 163	809 [7157] 151	949 [8398] 138		177	
	61 [16]		63 [553] 201	224 [1983] 201	366 [3243] 199	508 [4498] 192	633 [5599] 187	796 [7044] 173	916 [8103] 163	[202	
	68 [18]			201 [1780] 225	339 [2999] 225	467 [4135] 222	666 [5898] 211	804 [7115] 199	899 [7955] 194		228	
Max. Cont.	76 [20]		Í	172 [1522] 251	327 [2895] 251	480 [4247] 247	611 [5410] 240	745 [6596] 232	910 [8051] 217		253	
	83 [22]			144 [1276] 277	321 [2836] 276	466 [4127] 269	575 [5084] 263	732 [6474] 254		[278	
	91 [24]			119 [1049] 302	281 [2483] 301	435 [3853] 300	559 [4943] 291	703 [6223] 280			303	
Max. Inter.	95 [25]			105 [928] 315	262 [2319] 314	434 [3838] 311	553 [4894] 307	707 [6257] 294			316	
	Rotor Width	Overall Efficit	the second test in the second s	100% 🗌 -in]	40 - 69%	0 - 39%						-
	25.4 [1.000]	82 [729]	165 [1457]	329 [2914]	494 [4371]	659 [5828]	823 [7285]	988 [8742]	<mark>1152 [10199]</mark>			
	mm [in]	Displacement	tested at 54°	C [129°F] with	n an oil viscos	ity of 46cSt [2	13 SUS]					

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

ſ.	WHITE	30
		00

			Pressure - ba	r [psi]					Max. Cont.	Max. Inter.			
	350		17 [250]	35 [500]	69 [1000]	104 [1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
	348 cm ³ [2	1.2 in ³] / rev Torque - Nm	ib-in] Speed	rom				Intermitter	nt Ratings - 1	0% of	Operatior	n
Ē	0 (0 5)	1	64 [566]	134 [1183]	272 [2404]	399 [3532]						6	14
[gp	2 [0.5]		4	4	3	2						6	eg
рт	4 [1]		64 [570] 10	134 [1189] 9	296 [2619] 8	437 [3869] 8						11	etica
Flow - Ipm [gpm]	8 [2]	1	69 [607] 21	145 [1285] 20	312 [2764] 19	462 [4092] 18	600 [5308] 18	742 [6571] 17	855 [7569] 14			22	Theoretical rpm
Ē	15 [4]		71 [627]	151 [1340]	313 [2767]	471 [4169]	630 [5577]	772 [6834]	889 [7869]	993 [8785]		44	1
		-	42 62 [549]	41 149 [1618]	40 315 [2788]	39 474 [4191]	37 630 [5577]	35 768 [6796]	34 925 [8182]	28 1032 [9137]			-
	23 [6]		64	63	62	60	57	54	51	45		66	
	30 [8]	1	53 [472] 86	139 [1233] 85	307 [2713] 84	459 [4058] 82	626 [5537] 79	768 [6793] 75	928 [8210] 69	1051 [9300] 65		88	1
	38 [10]	1		113 [1004] 108	298 [2639] 108	431 [3814] 108	601 [5317] 102	745 [6593] 100		1062 [9399] 87		109	1
	45 [12]	1		98 [869] 130	265 [2346] 129	445 [3936] 128	581 [5144] 125	740 [6552] 117	891 [7889] 109	1044 [9237] 104		131	1
	53 [14]	1		86 [758] 152	252 [2226] 151	422 [3738] 150	570 [5044] 147	723 [6398] 139	881 [7794] 133	1031 [9126] 120		153	1
	61 [16]	1		63 [560] 173	235 [2079] 173	409 [3619] 172	549 [4859] 170	720 [6375] 163	850 [7522] 155			175	1
	68 [18]	1		110	220 [1948]	394 [3490]	571 [5054]	693 [6134]	839 [7428]	986 [8727]		197	1
÷ ×		1			195 208 [1843]	194 375 [3320]	190 513 [4544]	187 683 [6044]	175 835 [7385]	164 975 [8632]			1
Max. Cont.	76 [20]				217	216	214	213	195	188		218	
	83 [22]				179 [1583]	352 [3112]	554 [4906]	685 [6064]	813 [7198]	958 [8482]		240	1
		•			239 172 [1526]	239 360 [3186]	238 534 [4724]	233 666 [5890]	221	215			-
	91 [24]				261	261	260	256				262	
Max. Inter.	95 [25]	1				369 [3264] 271	529 [4682] 270	647 [5730] 265				273	1
2 -			Overall Effici	ency - 70 -	100%	40 - 69%	0 - 39%						-
	Rotor					40 - 00 /0	0 - 0370						
	Width	1	Theoretical To	orque - Nm [lb	-inj								
	39.4 [1.553]		95 [844]	191 [1688]	381 [3376]	572 [5064]	763 [6752]	954 [8439]	1144 [10127]	1335 [11815]			
	mm [in]	-	Displacement	tested at 54°	C [129°F] with	n an oil viscos	ity of 46cSt [2	13 SUS]	-				

			Pressure - ba	r [psi]					Max. Cont.	Max. Inter.			
	375		17 [250]	35 [500]	69 [1000]	104 [1500]	138 [2000]	173 [2500]	207 [3000]	241 [3500]			
375 cm ³ [22.8 in ³] / rev Torque - Nm [lb-in], Speed rpm Intermittent Ratings - 10% of Operation											ı		
[mdß	2 [0.5]		76 [674] 3									6	Theo
j mq	4 [1]		84 [745] 8	162 [1432] 7	329 [2911] 6	490 [4337] 6	639 [5652] 5	763 [6756] 3				11	Theoretical rpm
Flow - Ipm [gpm]	8 [2]		82 [724] 18	171 [1510] 17	361 [[3196] 16	537 [4754] 16	689 [6095] 14	836 [7399] 12	955 [8449] 9			21	l rpm
ш	15 [4]		77 [680] 39	163 [1439] 37	358 [3164] 37	537 [4756] 36	695 [6151] 32	857 [7587] 29	989 [8750] 25	1121 [9923] 20		41	1
	23 [6]		67 [595] 60	158 [1398] 59	354 [3130] 56	527 [4661] 56	695 [6155] 52		1011 [8951] 40	1168 [10334] 36		61	1
	30 [8]		57 [508] 80	149 [1321] 80	340 [3010] 78	510 [4512] 77	695 [6154] 71		1009 [8930] 60	1156 [10229] 51		82	1
	38 [10]			134 [1187] 100	322 [2849] 99	495 [4383] 96	681 [6024] 93		1007 [8913] 80	1157 [10235] 71		102	1
	45 [12]			115 [1013] 121	301 [2661] 120	480 [4249] 118	645 [5711] 113	809 [7159] 108		1141 [10098] 92		122	1
	53 [14]			93 [819] 141	280 [2475] 140	477 [4218] 138	633 [5602] 134	795 [7036] 128	949 [8402] 120	1117 [9887] 105		142	1
	61 [16]			73 [646] 161	261 [2314] 161	429 [3797] 160	598 [5296] 155	770 [6817] 151	934 [8267] 141			163	1
	68 [18]				236 [2091] 181	434 [3843] 181	597 [5282] 177	765 [6771] 168	907 [8026] 161	1080 [9554] 150		183	1
Max. Cont.	76 [20]				209 [1851] 202	384 [3396] 201	561 [4969] 198	740 [6549] 191	877 [7764] 183	1027 [9091] 168		203	1
	83 [22]				178 [1576] 222	374 [3309] 221	530 [4694] 218	696 [6160] 213	840 [7431] 205	100		223	1
Max. Inter.	91 [24]				141 [1246] 242	319 [2822] 241	511 [4523] 239	662 [5860] 233	200			244]
	Rotor Width		Overall Effic Theoretical To		100% 🗌 -in]	40 - 69%	0 - 39%						-
	31.8 [1.252]		103 [908]	205 [1815]	410 [3631]	615 [5446]	821 [7261]	1026 [9076]	1231 [10892]	1436 [12707]			
mm [in] Displacement tested at 54°C [129°F] with an oil viscosity of 46cSt [213 SUS]													

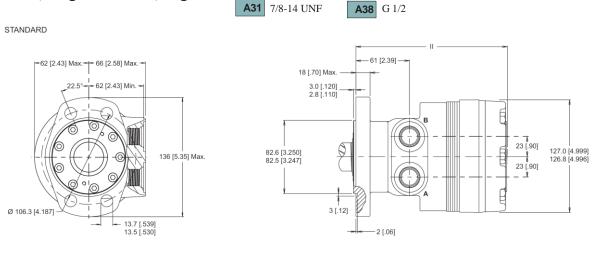
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

ii.		F	ressure - ba	r [psi]					Max. C	ont. Peak	_		
	470		17 [250]	35 [500]	69 [1000]	104 [15	500] 138	[2000]	173 <mark>[</mark> 25	600] 207 [300	0]		
	465 cm ³ [28	and the second second second		b-in], Speed	rpm				Intern	nittent Ratings	- 10% o	f Operatio	on
[mdf	2 [0.5]	Γ	93 [823] 2	185 [1635] 1								5	Theo
j] mq	4 [1]	h	97 [857] 7	203 [1794]	409 [3618]	610 [54	402] 815	[7209]				9	Tetic
Flow - Ipm [gpm]	8 [2]		98 [865]	209 [1845]	435 [3851]	659 [58			1025 [90	071] 1196 [105	86]	17	Theoretical rpm
Ē	15 [4]	ŀ	15 94 [834]	14 200 [1774]	13 444 [3932]	659 [58	829] 886		1066 [94		62]	33	1
8	23 [6]	h	31 86 [759]	30 193 [1704]	28 438 [3880]	28 673 [59	955] 872		23 1073 [94		28]	49	1
, in the second s	30 [8]	h	48 73 [643] 64	47 179 [1587] 63	44 424 [3752] 60	44 663 [58 60		41 [7586] 57	37 1098 [97 50	718] 1279[113 43	17]	66	1
2	38 [10]	h	52 [464] 81	164 [1455] 80	407 [3597] 78	627 [55 78			1067 [94 68		88]	82	1
2	45 [12]			141 [1248] 97	379 [3350] 94	630 [55 93	575] 832		1067 [94 83		64]	98	1
3	53 [14]			114 [1006] 113	350 [3094] 112	580 [51 111	133] 802		1013 [89 102	964] 1222 [108	17]	115	1
>	61 [16]			83 [736] 130	322 [2846] 129	545 [48 127	319] 796	[7040] 123	965 [85 119		28]	131	1
3	68 [18]			56 [497] 146	275 [2434] 145	526 [46 145	657] 737	[6519] 142	956 [84 138	164] 1166 [103	17]	147	
Max. Cont.	76 [20]				235 [2078] 162	479 [42 161	239] 706	[6249] 1 58	917 [8 ⁻ 154	117] 1122 [993	3]	164	1
20	83 [22]				202 [1790] 179	460 [40 178	075] 669	[5920] 1 76	883 [78 170	311]		180	
Max. Inter.	91 [24]				157 [1392] 195	385 [34 194	410] 620	[5484] 190	843 [74 186	164]		196	1
2 -	Rotor	0	verall Effici	ency - 70 -		40 - 69		0 - 39%	_		_		_
	Width	Т	heoretical To	rque - Nm [lb	-in]						_		
	39.4 [1.553]		127 [1127]	255 [2253]	509 [4506]	764 [67	60] 1018	8 [9013]	1273 [11	266] 1528 [135	19]		
	mm [in]		Displacement	tested at 54°	C [129°F] with	n an oil vi	iscosity of	46cSt [2	13 SUS]				
			Pressure -	bar [psi]				Max	. Cont.	Max. Inter.			
	540	1	17 [250]		0] 69 [10	000] 1	04 [1500]		[2000]	173 [2500]			
	536 cm ³ [3	2.7 in ^{3*}											
			-	m [lb-in], Sp	-			Inte	ermitter	it Ratings - 1	0% of O	peration	
gpm	2 [0.5]		104 [921] 2	197 [17 2	48]							4	Theo
Flow - lpm [gpm]	4 [1]	1	126 [1111 6] 230 [20 5	31] 467 [4 5	136] 6	99 [6183] 5] 939	[8310] 5	1149 [10165] 4	Γ	8	Theoretical rpm
- wol	8 [2]	1	134 [118 13	9] 240 [21 13	20] 501 [4 12		55 [6679] 12	· •	[8646] 11	1185 [10484] 10	Γ	15	l rpm
ш	15 [4]	1	120 [105 27			510] 7	57 [6697] 26] 988		1223 [10827] 23	F	29	
	23 [6]	1	97 [859]	224 [19	84] 505 [4	469] 7	83 [6930]] 993	[8787]	1225 [10838]	F	43	
	30 [8]	1	41 78 [692]		-	285] 7	40 50 [6635]] 983	38 [8698]	34 1251 [11075]	F	57	
	38 [10]	1	59 [523]			026] 7	54 28 [6445]] 959		48 1244 [11008]	F	71	
	45 [12]	1	70	70 176 [15	69 54] 438 [3		69 19 [6360]		67 [8360]	62 1203 [10646]	F	85	
	53 [14]	-		84 139 [12	83 33] 418 [3		83 82 [6035]		80 [8421]	77 1183 [10467]	ŀ	99	
		{		98 109 96	97 3] 385 [3		96 68 [5908]		94 [7957]	91 1163 [10290]	⊦		
	61 [16]	-		83 [73	111		111 12 [5417]	1	10 [7694]	105 1116 [9876]	⊢	114	
Ŀ, Ŀ	68 [18]	-		126	323 [2	3	125 03 [5333]	1	[7335]	123 1109 [9816]	-	128	
Max. Cont	76 [20]				140		139	1	38	134	-	142	
	83 [22]				297 [2 154	1	37 [4753] 153	1	[7011] 52		Ļ	156	
Max. Inter.	91 [24]				215 [1 16 9		91 [4349] 168		[6639] 68		L	170	
	Rotor		Overall Eff	iciency -	70 - 100% 🛛	4	0 - 69%		0 - 39%				
	Width	1	Theoretical	Torque - Nr	n [lb-in]								
	45.5 [1.791]		147 [1302	294 [260	04] 588 [5	207] 8	83 [7811]	1177	[10414]	1471 [13018]			
	mm [in]	-	Displaceme	ent tested at	54°C [129°] with a	n oil visco	sity of 4	46cSt [2	13 SUS]			

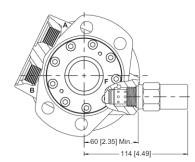
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

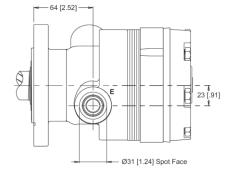
		Pressure - bar [psi]		Max. Cont. Max. Int	er.
	620	17 [250] 35 [500]	69 [1000] 104 [1500]] 121 [1750] 155 [225	50]
(631 cm ³ [38.5 in] / rev Torque - Nm [lb-in], Spee	d rpm	Intermittent Ratings	 - 10% of Operation
[mdf	2 [0.5]	120 [1060] 228 [2021			3 The
Flow - Ipm [gpm]	4 [1]	136 [1202] 264 [2332 5 5] 535 [4733] 796 [7048 5 4) 935 [8275] 3	3 6 17] 12 rpm
- wol	8 [2]	142 [1256] 276 [2445 11 11			17] 12 m
ш.	15 [4]	131 [1159] 269 [2379 23 23			24
Ĩ	23 [6]	111 [982] 260 [2300 35 35] 575 [5087] 883 [7811 34 34] 1014 [8976] 1285 [113 33 29	368] 36
[30 [8]	91 [809] 247 [2184 47 47	46 45	44 40	40
[38 [10]	67 [595] 220 [1943 59 58	58 57	56 52	00
	45 [12]	203 [1794 71	70 70	69 65	12
	53 [14]	160 [1419 83	81 80	79 78	04
	61 [16]	124 [1095 95	94 93	92 90	90
	68 [18]	91 [801] 107	407 [3599] 703 [6223 107 106	105 104	100
Max. Cont.	76 [20]		358 [3172] 675 [5974 119 118 328 [2901] 614 [5431	117 115	120
	83 [22]		328 [2901] 614 [5431] 131 131 247 [2185] 556 [4922]	130	132
Max. Inter.	91 [24]		143 142	141	144
	Rotor Width	Overall Efficiency - 70 Theoretical Torque - Nm	0 - 100% 40 - 69%	0 - 39%	
]	54.0	173 [1532] 346 [3064		1] 1212 [10729] 1559 [137	7941
l	[2.125] mm [in]		4°C [129°F] with an oil visco		
		Pressure - bar [psi]		Cont. Peak	
	750	17 [250] 35 [50		1500] 138 [2000]	
	748 cm ³ [45.6				
Ē	· ·	Torque - Nm [lb-in], S	peed rpm	rmittent Ratings - 10%	
Flow - Ipm [gpm]	2 [0.5]	147 [1299] 281 [2 2 1 156 [1270] 200 [2			3 6 11
- Ipm	4 [1]	156 [1379] 322 [2 4 4	4	[8554] 1308 [11571] 3 3 1300 [10000]	6 tical
Flow	8 [2]	158 [1403] 339 [3 9 9 150 [1050] 001 [0	9	[9088] 1360 [12033] 8 7	11 Pm
	15 [4]	153 [1350] 331 [2 19 19	19 1	[9419] 1416 [12534] 8 16	21
	23 [6]	135 [1194] 321 [2 29 29	28 2	[9373] 1408 [12462] 28 26	31
	30 [8]	114 [1008] 304 [2 40 40	39 3	[9197] 1421 [12573] 38 34	41
	38 [10]	82 [722] 271 [2	395] 648 [5733] 1015	[8080] 1371 [12130]	E1
		50 49	49 4	8 47	51
	45 [12]	54 [477] 249 [2 60 60	207] 616 [5452] 983 59 5	8 47 [8699] 1345 [11902] i9 56	61
	45 [12] 53 [14]	54 [477] 249 [2 60 60 197 [1 70	207] 616 [5452] 983 59 55 739] 577 [5104] 946 69 6	48 47 [8699] 1345 [11902] 59 56 [8372] 1311 [11600] 58 67	
		54 [477] 249 [2 60 60 197 [1	207] 616 [5452] 983 59 55 739] 577 [5104] 946 69 6 325] 533 [4718] 905	18 47 [8699] 1345 [11902] i9 56 [8372] 1311 [11600]	61
	53 [14]	54 [477] 249 [2 60 60 197 [1 70 150 [1 150 [1	207] 616 [5452] 983 59 55 739] 577 [5104] 946 69 66 325] 533 [4718] 90 79 7 7 27] 494 [4374] 860 90 8 8	47 [8699] 1345 [11902] 9 56 [8372] 1311 [11600] 18 67 [8008] 1271 [11249] 18 76 [7614] 1225 [10843] 19 88	61 71
Max. Cont.	53 [14] 61 [16]	54 [477] 249 [2 60 60 197 [1] 70 150 [1 80 105 [9 105 [9	207] 616 [5452] 983 59 55 739] 577 [5104] 946 69 66 66 325] 533 [4718] 905 79 7 7 7 27] 494 [4374] 860 90 8 52 423 [3741] 805	47 [8699] 1345 [11902] 59 56 [8372] 1311 [11600] 8 67 [8008] 1271 [11249] 8 76 [7614] 1225 [10843]	61 71 82
Max. Cont.	53 [14] 61 [16] 68 [18]	54 [477] 249 [2 60 60 197 [1 70 150 [1 80 105 [9 90 62 [5 62 [5	207] 616 [5452] 983 59 55 739] 577 [5104] 946 325] 533 [4718] 905 60 79 7 7 7 7 27] 494 [4374] 860 90 85 52] 423 [3741] 805 9 9 385 [3404] 747 7 100 9	8 47 [8699] 1345 [11902] 99 56 [8372] 1311 [11600] 8 67 [8008] 1271 [11249] 8 76 [7614] 1225 [10843] 9 88 [7123] 1173 [10385]	61 71 82 92
	53 [14] 61 [16] 68 [18] 76 [20]	54 [477] 249 [2 60 60 197 [1 70 150 [1 80 105 [9 90 62 [5 62 [5	207] 616 [5452] 983 59 53 5 739] 577 [5104] 946 69 6 6 325] 533 [4718] 906 79 7 7 7 27] 494 [4374] 860 90 8 8 52] 423 [3741] 805 100 9 8 9 385 [3404] 747 10 1 302 [2669] 670 1 1	88 47 [8699] 1345 [11902] i9 56 [8372] 1311 [11600] 8 67 [8008] 1271 [11249] 8 76 [7614] 1225 [10843] 9 88 [7123] 1173 [10385] 9 98 [6608]	61 71 82 92 102
Max. Max. Inter. Cont.	53 [14] 61 [16] 68 [18] 76 [20] 83 [22] 91 [24] Rotor Width	54 [477] 249 [2 60 197 [1] 70 150 [1 80 105 [9 90 62 [5 100	207] 616 [5452] 983 59 53 55 739] 577 [5104] 946 69 66 6 325] 533 [4718] 96 79 7 7 7 27] 494 [4374] 860 90 8 552 423 [3741] 805 50 100 9 385 [3404] 747 110 10 1 10 1 10 302 [2669] 670 121 12 70 - 100% 40 - 6 60 60 60	8 47 [8699] 1345 [11902] i9 56 [8372] 1311 [11600] i8 67 [8008] 1271 [11249] i8 76 [7614] 1225 [10843] i9 88 [6608] 10 10 5932]	61 71 82 92 102 112
	53 [14] 61 [16] 68 [18] 76 [20] 83 [22] 91 [24] Rotor	54 [477] 249 [2 60 197 [1] 70 150 [1] 80 105 [9] 90 62 [5] 100 100 00 62 [5] 100 00 60 100	207] 616 [5452] 983 59 53 5 739] 577 [5104] 946 69 69 6 325] 533 [4718] 905 79 7 7 27] 494 [4374] 860 90 8 8 52] 423 [3741] 805 100 9 385 [3404] 747 110 1° 302 [2669] 670 121 12 12 12 12 70 - 100% 40 - 6 40 - 6 40 - 6	8 47 [8699] 1345 [11902] i9 56 [8372] 1311 [11600] i8 67 [8008] 1271 [11249] i8 76 [7614] 1225 [10843] i9 88 [6608] 10 10 5932]	61 71 82 92 102 112

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

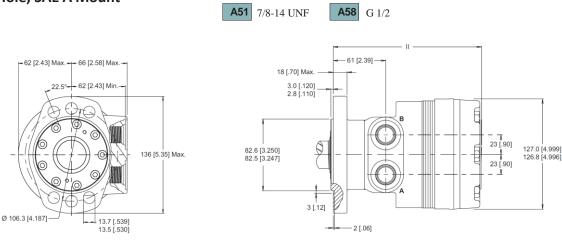


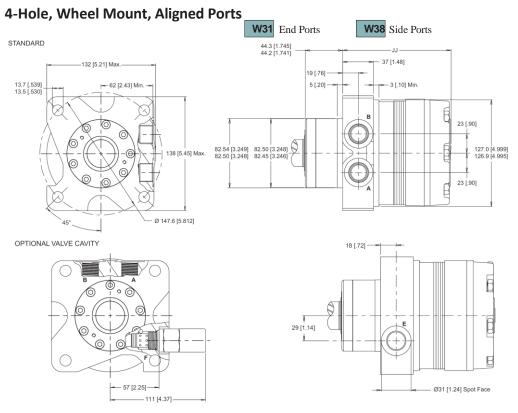
▶ Performance data is typical. Performance of production units varies slightly from one motor to another. Operating at maximum continuous pressure and maximum continuous flow simultaneously is not recommended. For additional information on product testing refer to page 6.


505/506 Series Housing


▶ The dimensions shown are without paint. Paint thickness can be up to 0.13 [.005].

4-Hole, Magneto Mount, Aligned Ports


OPTIONAL VALVE CAVITY



E: 10 Series/2-Way Valve Cavity 7/8-14 UNF F: Valve Cartridge Installed

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

E: 10 Series/2-Way Valve Cavity 7/8-14 UNF F: Valve Cartridge Installed

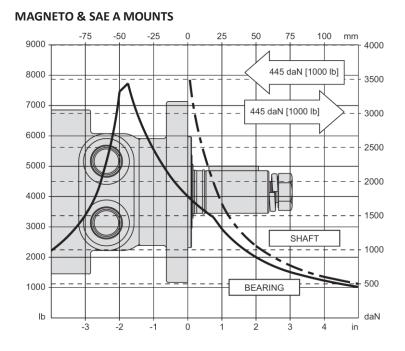
Dimensions JJ are charted on page 25. 505/506 Series Technical Information

Allowable Shaft Load / Bearing Curve Length & Weight Chart

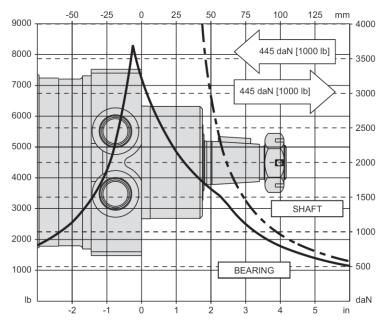
The bearing curve represents allowable bearing loads based on ISO 281 bearing capacity for an L_{10} life of 2,000 hours at 100 rpm. Radial loads for speeds other than 100 rpm may be calculated using the multiplication factor table on page 7.

LENGTH & WEIGHT CHART

Dimensions II & JJ are the overall motor lengths from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed on page 23.

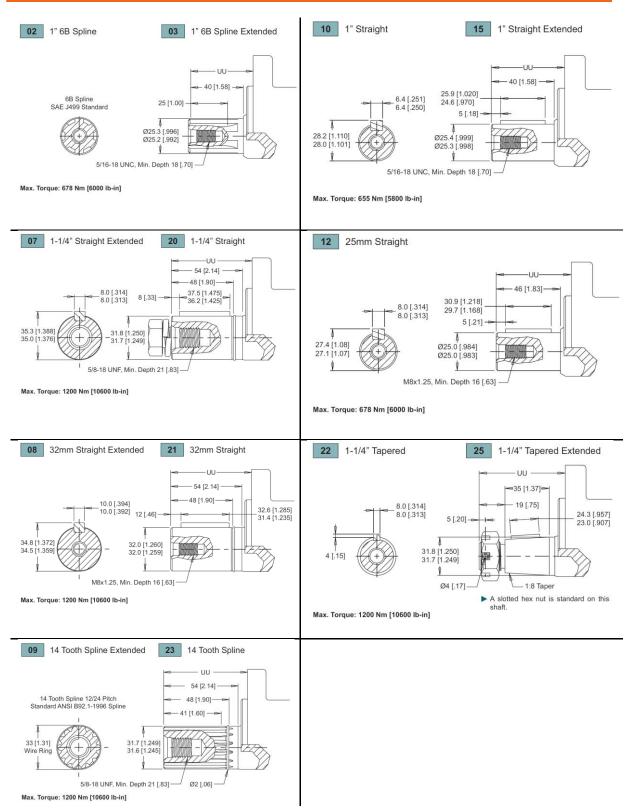

Π	Lenght	Weight	JJ	Lenght	Weight
#	mm [in]	kg [lb]	#	mm [in]	kg [lb]
120	162 [6.37]	10.6 [23.4]	120	120 [4.72]	11.7 [25.8]
160	162 [6.37]	10.6 [23.4]	160	120 [4.72]	11.7 [25.8]
200	165 [6.51]	11.0 [24.2]	200	123 [4.86]	12.1 [26.6]
230	168 [6.61]	11.1 [24.4]	230	126 [4.95]	12.2 [26.8]
260	170 [6.70]	11.3 [25.0]	260	128 [5.05]	12.4 [27.4]
300	174 [6.83]	11.7 [25.8]	300	132 [5.18]	12.8 [28.2]
350	187 [7.38]	12.8 [28.2]	350	146 [5.73]	13.9 [30.6]
375	180 [7.08]	12.2 [27.0]	375	138 [5.43]	13.3 [29.4]
470	187 [7.38]	12.8 [28.2]	470	146 [5.73]	13.9 [30.6]
540	194 [7.62]	13.3 [29.4]	540	152 [5.97]	14.4 [31.8]

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


WHITE 35

620	202 [7.95]	14.1 [30.9]	620	161 [6.35]	15.1 [33.4]
750	212 [8.33]	14.8 [32.5]	750	170 [6.68]	15.8 [34.9]

► All RE series motor weights can vary ± 0.5 kg [1 lb] depending on model configurations such as housing, shaft, end cover, options etc.

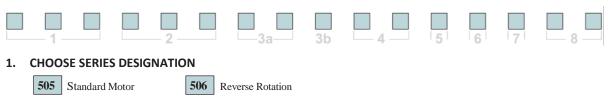


WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

505/506 Series Shaft

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..


MOUNTING / SHAFT LENGTH CHART

Dimension UU is the overall distance from the motor mounting surface to the end of the shaft and is referenced on detailed shaft drawings above.

UU	Magneto & A Mounts	Wheel Mounts
#	mm [in]	mm [in]
02	50 [1.97]	91 [3.60]
03	76 [3.01]	118 [4.64]
07	88 [3.45]	129 [5.09]
08	88 [3.45]	129 [5.09]
09	88 [3.45]	129 [5.09]
10	50 [1.97]	91 [3.60]
12	56 [2.21]	98 [3.84]
15	76 [3.01]	118 [4.64]
20	61 [2.41]	103 [4.05]
21	61 [2.41]	103 [4.05]
22	66 [2.58]	107 [4.22]
23	61 [2.41]	103 [4.05]
25	92 [3.62]	134 [5.26]

• Shaft lengths vary ± 0.8 mm [.030 in.]

505/506 Series Ordering Information

The 505 & 506 series is bi-directional. For applications requiring the motor to rotate in only one direction, shaft seal life may be prolonged by pressurizing the A port of the motor.

2. SELECT A DISPLACEMENT OPTION

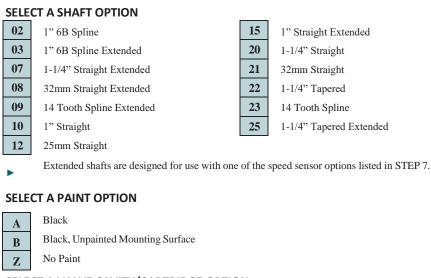
120	121 cm ³ /rev [7.4 in ³ /re	/] 350	348 cm ³ /rev	[21.1 in ³ /rev]
160	162 cm ³ /rev [9.9 in ³ /re	<i>3</i> 75	375 cm ³ /rev	[22.8 in ³ /rev]
200	204 cm ³ /rev [12.4 in ³ /r	ev] 470	465 cm ³ /rev	[28.3 in ³ /rev]
230	232 cm ³ /rev [14.2 in ³ /r	ev] 540	536 cm ³ /rev	[32.7 in ³ /rev]
260	261 cm ³ /rev [15.9 in ³ /r	ev] 620	631 cm ³ /rev	[38.5 in ³ /rev]
300	300 cm ³ /rev [18.3 in ³ /r	ev] 750	748 cm ³ /rev	[45.6 in ³ /rev]

3. SELECT MOUNT & PORT OPTION

W38

- A31 4-Hole, Magneto Mount, Aligned Ports, 7/8-14 UNF
- A38 4-Hole, Magneto Mount, Aligned Ports, G 1/24-Hole, Wheel Mount
- A51 6-Hole, SAE A Mount, Aligned Ports, 7/8-14 UNF
- A58 6-Hole, SAE A Mount, Aligned Ports, G 1/2
- W31 4-Hole, Wheel Mount, Aligned Ports, 7/8-14 UNF

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


4-Hole, Wheel Mount, Aligned Ports, G $1\!/\!2$

▶ The speed sensor option is not available on wheel mounts.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

B

С

D

Е

4.

5.

6.

7.

SELECT A VALVE CAVITY/CARTRIDGE OPTION

- None
 - Valve Cavity Only
- 69 bar [1000 psi] Relief
- 86 bar [1250 psi] Relief
- 104 bar [1500 psi] Relief
- Valve cavity is not available on port option 3.

SELECT AN ADD-ON OPTION

Α	Standard
В	Lock Nut
С	Solid Hex Nut
W	Speed Sensor, Dual, 4-Pin Male Weatherpack Connector
X	Speed Sensor, Dual, 4-Pin M12 Male Connector
Y	Speed Sensor, Single, 3-Pin Male Weatherpack Connector
Z	Speed Sensor, Single, 4-Pin M12 Male Connector
CELE	

8. SELECT A MISCELLANEOUS OPTION

AA None AC Freetu

Freeturning Rotor

AE Hydraulic Declutch with Freeturning Rotor

520/521 Series Housing

▶ The dimensions shown are without paint. Paint thickness can be up to 0.13 [.005].

6-Hole, SAE A Mount, Aligned Port

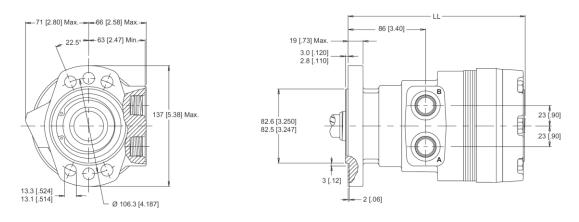
121 bar [1750 psi] Relief

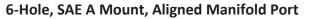
138 bar [2000 psi] Relief

173 bar [2500 psi] Relief

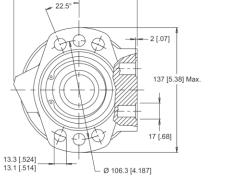
207 bar [3000 psi] Relief

F

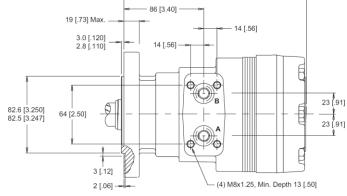

G


J

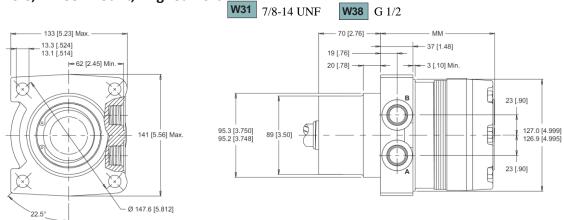
L


WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

WHITE 40



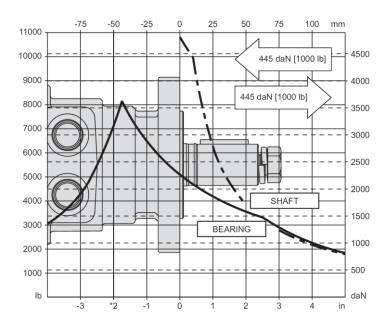
A57 ¹/₂" Drilled 86 [3.40] 19 [.73] Max 14 [.56] 3.0 [.120] 2.8 [.110] 14 [.56]



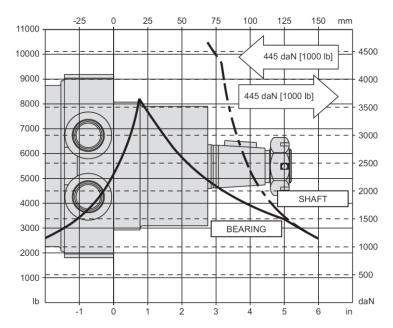
🕶 63 [2.48] Min.-

71 [2.80] Max.-

4-Hole, Wheel Mount, Aligned Port


520/521 Series Technical Information

Allowable Shaft Load / Bearing Curve Length & Weight Chart


The bearing curve represents allowable bearing loads based on ISO 281 bearing capacity for an L_{10} life of 2,000 hours at 100 rpm. Radial loads for speeds other than 100 rpm may be calculated using the multiplication factor table on page 7.

SAE A Mounts

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

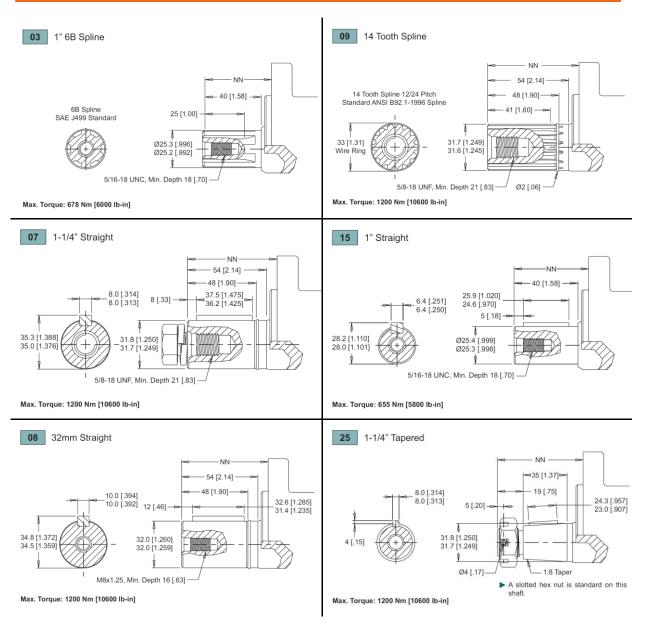
Wheel Mounts

LENGTH & WEIGHT CHART

Dimension LL & MM is the overall motor length from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed above.

LL	Lenght	Weight	MM	Lenght	Weight
#	mm [in]	kg [lb]	#	mm [in]	kg [lb]
120	187 [7.37]	13.3 [29.4]	120	120 [4.72]	12.9 [28.4]
160	187 [7.37]	13.3 [29.4]	160	120 [4.72]	12.9 [28.4]
200	191 [7.51]	13.7 [30.2]	200	123 [4.86]	13.2 [29.2]
230	193 [7.61]	13.8 [30.4]	230	126 [4.95]	13.3 [29.4]
260	196 [7.70]	14.1 [31.0]	260	128 [5.05]	13.6 [30.0]
300	199 [7.83]	14.4 [31.8]	300	132 [5.18]	14.0 [30.8]

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


350	213 [8.38]	15.5 [34.2]	350	146 [5.73]	15.1 [33.2]
375	205 [8.08]	15.0 [33.0]	375	138 [5.43]	14.5 [32.0]
470	213 [8.38]	15.5 [34.2]	470	146 [5.73]	15.1 [33.2]
540	219 [8.62]	16.1 [35.4]	540	152 [5.97]	15.6 [34.4]
620	227 [8.95]	16.8 [36.9]	620	160 [6.30]	16.3 [35.9]
750	237 [9.33]	17.5 [38.5]	750	170 [6.68]	17.0 [37.5]

• All RE series motor weights can vary ± 0.5 kg [1 lb] depending on model configurations such as housing, shaft, endcover, options etc.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

520/521 Series Shaft

MOUNTING / SHAFT LENGHT CHART

Dimension NN is the overall motor length from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed above.

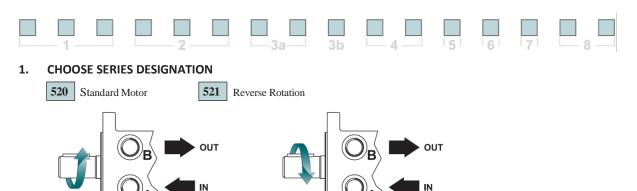
NN	SAE A Mounts	Wheel Mounts
#	mm [in]	mm [in]
03	51 [2.02]	119 [4.69]
07	63 [2.47]	131 [5.15]
08	62 [2.47]	130 [5.15]
09	63 [2.47]	131 [5.15]
15	51 [2.02]	119 [4.69]

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

75
43

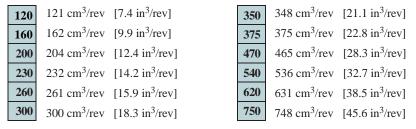
67 [2.63]

133 [5.25]


• *Shaft lengths vary $\pm 0.8 \text{ mm} [.030 \text{ in.}]$

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..



520/521 Series Ordering Information

The 520 & 521 series is bi-directional. For applications requiring the motor to rotate in only one direction, shaft seal life may be prolonged by pressurizing the A port of the motor.

2. SELECT A DISPLACEMENT OPTION

3. SELECT MOUNT & PORT OPTION

A51 6-Hole, SAE A Mount, Aligned Ports, 7/8-14 UNF

A57 6-Hole, SAE A Mount, Aligned Manifold Ports, 1/2" Drilled

A58 6-Hole, SAE A Mount, Aligned Ports, G 1/2

- W31 4-Hole, Wheel Mount, Aligned Ports, 7/8-14 UNF
- W38 4-Hole, Wheel Mount, Aligned Ports, G ¹/₂
- ▶ The speed sensor option is not available on wheel mounts.

4. SELECT A SHAFT OPTION

- **03** 1" 6B Spline
- **07** 1-1/4" Straight
- 08 32mm Straight
- **09** 14 Tooth Spline
- 15 1" Straight
- **25** 1-1/4" Tapered

5. SELECT A PAINT OPTION

- A Black
 - Black, Unpainted Mounting Surface
 - No Paint

6. SELECT A VALVE CAVITY/CARTRIDGE OPTION

A None

B

Z

A

7. SELECT AN ADD-ON OPTION

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

A Standard

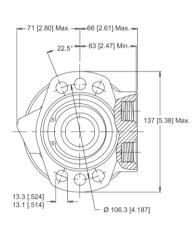
B C Lock Nut

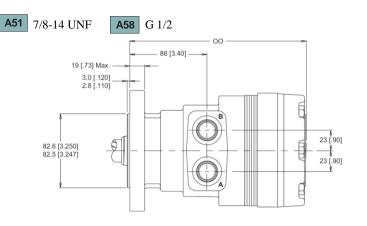
Solid Hex Nut

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

8. SELECT A MISCELLANEOUS OPTION


AA None AC Freeturning Rotor


AE Hydraulic Declutch with Freeturning Rotor

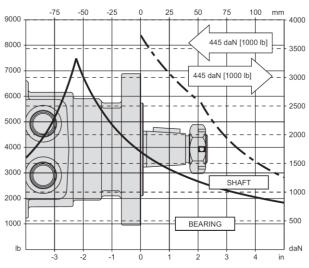
530/531 Series Housing

▶ The dimensions shown are without paint. Paint thickness can be up to 0.13 [.005].

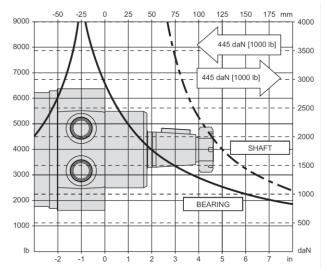
6-Hole, SAE A Mount, Aligned Ports

4-Hole, Wheel Mount, Aligned Ports

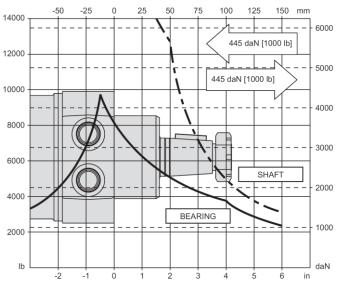
WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

530/531 Series Technical Information

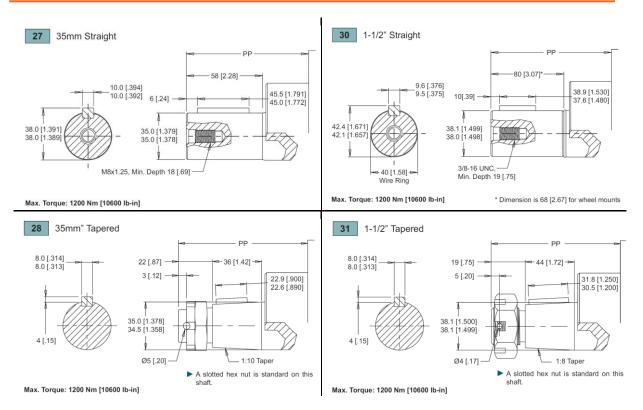

Allowable Shaft Load / Bearing Curve

The bearing curve represents allowable bearing loads based on ISO 281 bearing capacity for an L_{10} life of 2,000 hours at 100 rpm. Radial loads for speeds other than 100 rpm may be calculated using the multiplication factor table on page 7.

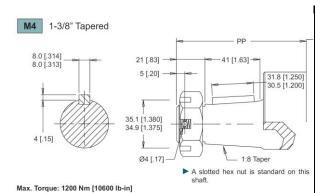

SAE A Mounts

T31 & T38 WHEEL MOUNTS

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


LENGTH & WEIGHT CHART

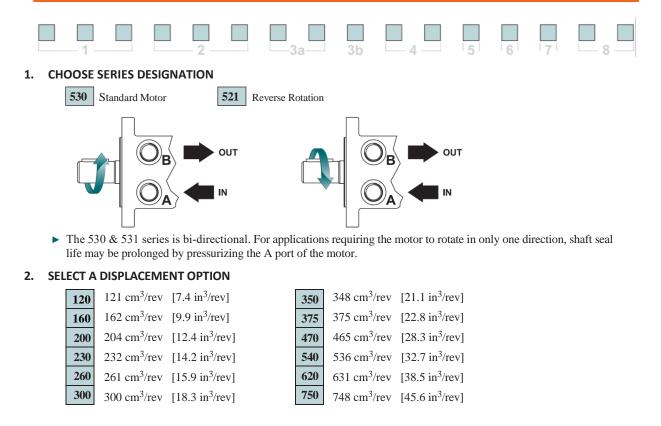
Dimension OO is the overall motor length from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed above.


00	SAE A Mounts	Wheel Mounts	Weight
#	mm [in]	mm [in]	kg [lb]
120	187 [7.37]	156 [6.15]	13.3 [29.4]
160	187 [7.37]	156 [6.15]	13.3 [29.4]
200	191 [7.51]	159 [6.29]	13.7 [30.2]
230	193 [7.61]	162 [6.38]	13.8 [30.4]
260	196 [7.70]	165 [6.48]	14.1 [31.0]
300	199 [7.83]	168 [6.61]	14.4 [31.8]
350	213 [8.38]	182 [7.16]	15.5 [34.2]
375	205 [8.08]	174 [6.86]	15.0 [33.0]
470	213 [8.38]	182 [7.16]	15.5 [34.2]
540	219 [8.62]	188 [7.40]	16.1 [35.4]
620	227 [8.95]	196 [7.77]	16.8 [36.9]
750	237 [9.33]	206 [8.11]	17.5 [38.5]

• All RE series motor weights can vary ± 0.5 kg [1 lb] depending on model configurations such as housing, shaft, endcover, options etc.

530/531 Series Shaft

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.


MOUNTING / SHAFT LENGHT CHART

Dimension PP is the overall motor length from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed above.

PP	SAE A Mounts	Wheel Mounts
#	mm [in]	mm [in]
27	N/A	104 [3.97]
28	N/A	105 [4.14]
30	87 [3.42]	118 [4.63]
31	84 [3.32]	115 [4.53]
M4	83 [3.28]	114 [4.49]

*Shaft lengths vary ± 0.8 mm [.030 in.]

530/531 Series Ordering Information

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

WHITE | 51

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

3. SELECT MOUNT & PORT OPTION

- A51 6-Hole, SAE A Mount, Aligned Ports, 7/8-14 UNF
- A58 6-Hole, SAE A Mount, Aligned Ports, G 1/2
- T31 4-Hole, Wheel Mount, Aligned Ports, 7/8-14 UNF
- T38 4-Hole, Wheel Mount, Aligned Ports, G ¹/₂
- **W31** 4-Hole, Wheel Mount, Aligned Ports, 7/8-14 UNF
- **W38** 4-Hole, Wheel Mount, Aligned Ports, G ¹/₂

4. SELECT A SHAFT OPTION

27	35mm Straight
28	35mm Tapered
30	1-1/2" Straight

- **30** 1-1/2" Straight **31** 1-1/2" Tapered
- **31** 1-1/2" Tapered **M4** 1-3/8" Tapered
 - 4 1-3/8" Tapered
 - ► The 27 & 28 shafts are not available with SAE A mounts. The M4 shaft is only available with the "T" mount wheel motors

A

AE

Black, Unpainted Mounting Surface No Paint

6. SELECT A VALVE CAVITY/CARTRIDGE OPTION

None

7. SELECT AN ADD-ON OPTION

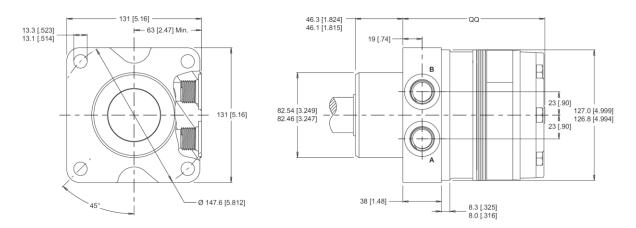
A Standard
B Lock Nut
C Solid Hex Nut

8. SELECT A MISCELLANEOUS OPTION

- AA None
- AC Freeturning Rotor
 - Hydraulic Declutch with Freeturning Rotor

535/536 Series Housing

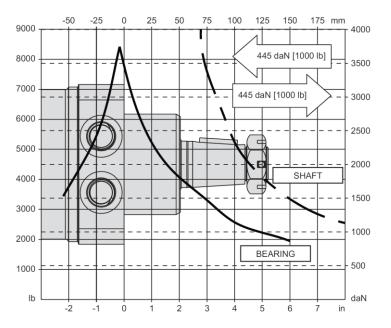
▶ The dimensions shown are without paint. Paint thickness can be up to 0.13 [.005].


4-Hole, Wheel Hub Mount, Aligned Ports

T31 7/8-14 UNF

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..



535/536 Series Technical Information

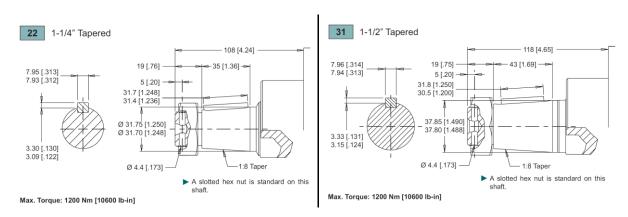
Allowable Shaft Load / Bearing Curve

The bearing curve represents allowable bearing loads based on ISO 281 bearing capacity for an L_{10} life of 2,000 hours at 100 rpm. Radial loads for speeds other than 100 rpm may be calculated using the multiplication factor table on page 7.

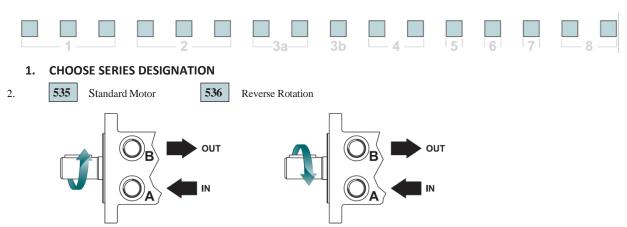
Wheel Mounts

LENGTH & WEIGHT CHART

Dimension QQ is the overall motor length from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed on page 7.


QQ	Lenght	Weight
#	mm [in]	kg [lb]
200	129 [5.08]	13.7 [30.1]
230	132 [5.18]	13.8 [30.4]
300	137 [5.40]	14.4 [31.7]
375	144 [5.65]	15.0 [33.0]

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.



All RE series motor weights can vary $\pm 0.5 \text{ kg} [1 \text{ lb}]$ depending on model configurations such as housing, shaft, endcover, options etc.

535/536 Series Shaft

535/536 Series Ordering Information

► The 535 & 536 series is bi-directional. For applications requiring the motor to rotate in only one direction, shaft seal life may be prolonged by pressurizing the A port of the motor.

3. SELECT A DISPLACEMENT OPTION

- 200
 204 cm³/rev
 [12.4 in³/rev]

 230
 232 cm³/rev
 [14.2 in³/rev]

 300
 300 cm³/rev
 [18.3 in³/rev]
- **375** 375 cm³/rev [22.8 in³/rev]

3. SELECT MOUNT & PORT OPTION

T31 4-Hole, Wheel Mount, Aligned Ports, 7/8-14 UNF

4. SELECT A SHAFT OPTION

22

31

- 1-1/4" Tapered
- 1-1/2" Tapered
- ▶ The 27 & 28 shafts are not available with SAE A mounts. The M4 shaft is only available with the "T" mount wheel motors
- 5. SELECT A PAINT OPTION

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..

Black Black, Unpainted Mounting Surface No Paint

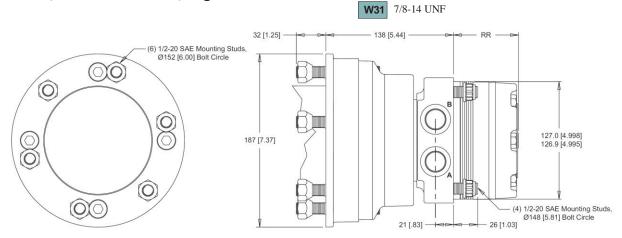
6. SELECT A VALVE CAVITY/CARTRIDGE OPTION

A None

7. SELECT AN ADD-ON OPTION

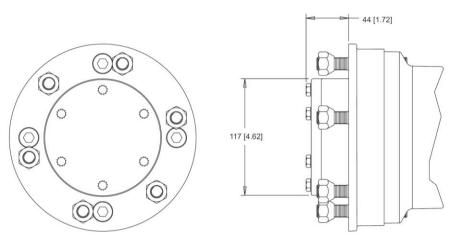
Standard

8. SELECT A MISCELLANEOUS OPTION


Α

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

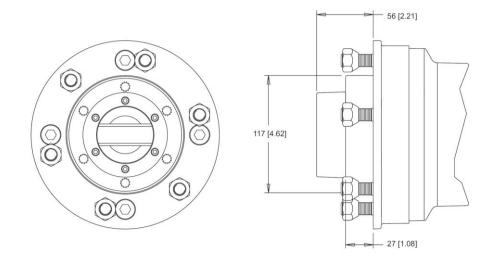
540/541 Series Housing


▶ The dimensions shown are without paint. Paint thickness can be up to 0.13 [.005].

4-Hole, Wheel Hub Mount, Aligned Ports

540/541 Series Hub Option Details

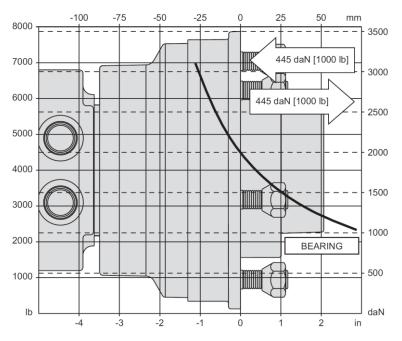
Standard Hub



Locking Hub

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..


WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

540/541 Series Technical Information

Allowable Shaft Load / Bearing Curve

The bearing curve represents allowable bearing loads based on ISO 281 bearing capacity for an L_{10} life of 2,000 hours at 100 rpm. Radial loads for speeds other than 100 rpm may be calculated using the multiplication factor table on page 7.

Wheel Hub Mounts

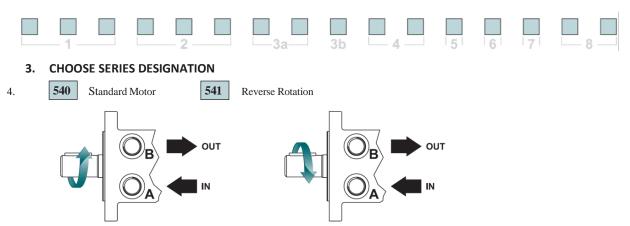
LENGTH & WEIGHT CHART

Dimension RR is the overall motor length from the rear of the motor to the mounting flange surface and are referenced on detailed housing drawings listed on page 7.

RR	Lenght	Weight
#	mm [in]	kg [lb]
120	70 [2.77]	22.3 [49.1]
160	70 [2.77]	22.3 [49.1]
200	74 [2.90]	22.6 [49.9]
230	76 [2.99]	22.7 [50.1]
260	79 [3.09]	23.0 [50.7]
300	82 [3.22]	23.4 [51.5]
350	96 [3.77]	24.4 [53.9]
375	88 [3.47]	23.9 [52.7]
470	96 [3.77]	24.4 [53.9]
540	102 [4.01]	25.0 [55.1]
620	110 [4.34]	25.7 [56.6]
750	120 [4.72]	26.4 [58.2]

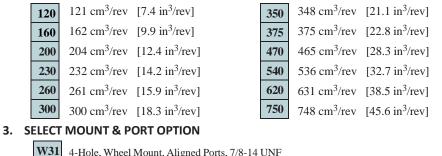
All RE series motor weights can vary ± 0.5 kg [1 lb] depending on model configurations such as housing, shaft, endcover, options etc.

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.



WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z o.o..



540/541 Series Ordering Information

The 540 & 541 series is bi-directional. For applications requiring the motor to rotate in only one direction, shaft seal life may be prolonged by pressurizing the A port of the motor.

4. SELECT A DISPLACEMENT OPTION

4-Hole, Wheel Mount, Aligned Ports, 7/8-14 UNF

4. **SELECT A SHAFT OPTION**

5.

SELECT A PAINT OPTION

6-Bolt Wheel Flange

Α Black

61

B

Z

A

Н

AC AE

Black, Unpainted Mounting Surface No Paint

SELECT A VALVE CAVITY/CARTRIDGE OPTION 6.

None

7. **SELECT AN ADD-ON OPTION**

- Standard A
 - Locking Hub

SELECT A MISCELLANEOUS OPTION 8.

None AA

- Freeturning Rotor
- Hydraulic Declutch with Freeturning Rotor

WHITE can accept no responsibility for possible errors in catalogues, brochures, and other printed material. WHITE reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.

All trademarks in this material are the property of the respective companies. WHITE and the WHITE logotype are trademarks of WHITE Drive Motors & Steering LLC and WHITE Drive Motors and Steering Sp. z 0.0.

White Drive Motors & Steering, LLC 110 Bill Bryan Blvd, Hopkinsville, Kentucky, 42240

White Drive Motors and Steering sp. z o.o. ul. Logistyczna 1, Bielany Wrocławskie, 55-040 Kobierzyce

whitedriveproducts.com