MOTORS

USER MANUAL

Orbital Motor, EMD Speed Sensor

together in motion

White is a leading global provider of motor and steering solutions that power the evolution of mobile and industrial applications around the world.

Contents

Chapter 1 Product overview	4
Description	
EMD Speed Sensor for Orbital Motors	6
EMD Speed Sensor features	6
EMD Speed Sensor dimensions	6
EMD Speed Sensor pinout	7
EMD Speed Sensor mating connector	7
Deutsch® DT connector 6 pin mating connector assembly	7
EMD Speed Sensor specifications	7
EMD speed sensor ordering information	8
Order information	8
Pulse mode	8
Quadrature mode	8
CAN mode	9
EMD Speed Sensor wiring diagrams	9
Wiring diagram: CAN mode	9
Wiring diagram: Pulse and quadrature mode	9
Conversion Diagram	10
Chapter 2 Sectional drawings	11
OMM EMD	12
OMP/OMR EMD	12
OMS EMD	13
Chapter 3 Filter parameter	14
Moving Average Pulse period time Number	15
Positioning	15
Typical Backlash in the Orbit Motors	15
Chapter 4 Mounting of EMD Speed Sensor	16
Installation guide	
LSHT-motors with EMD-speed sensor	
Figures	
Tables	 18

Chapter 1 Product overview

Topics:

- Description
- EMD Speed Sensor for Orbital Motors
- EMD Speed Sensor features
- EMD Speed Sensor dimensions
- EMD Speed Sensor pinout
- EMD Speed Sensor mating connector
- EMD Speed Sensor specifications
- EMD speed sensor ordering information
- Pulse mode
- **Quadrature** mode
- CAN mode

🔼 Warning:

Please note that the EMD speed sensor may fail. Output signals may not represent correct rotation speed or direction.

Any application of the EMD speed sensor should be subjected to appropriate hazard and risk assessment, according to relevant safety standards for the application.

Reliability data MTBF for the EMD speed sensor are available on request.

Description

The function of the speed sensor is to detect shaft speed and the direction of rotation. The sensor is mounted to the end cover of an LSHT Orbital Motor and senses the speed from a magnet that is rotating inside the motor.

The magnet is connected to the cardan shaft (spool valve motor) or valve drive (disc valve motor) by a shaft.

Rotation of the magnet generates a rotating magnetic field that is a function of motor speed and direction.

EMD-Speed sensor converts this magnetic field into output signal of speed and direction.

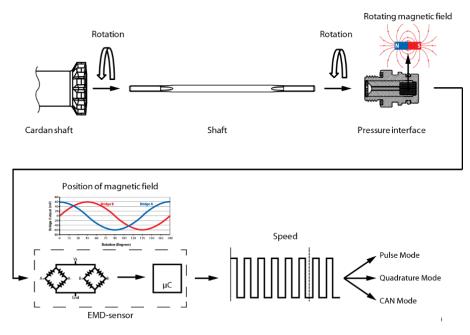


Figure 1 Sensor principle

Note:

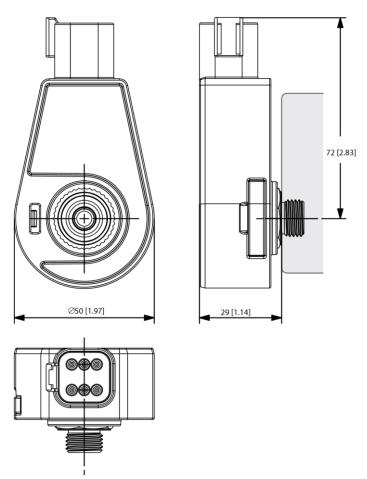
After each Power-Up the shaft must rotate 1-2 revolutions before an output signal is generated.

Because of the digital output signals for speed and direction and a non-speed dependent output voltage level, the sensor is ideal for high and low speed measurements.

The speed sensor is designed for rugged outdoor, mobile or heavy industrial speed sensing applications. The detection of the speed is contactless. It is a "plug and perform" device that does not need any calibration or adjustments.

Mounting with a snap/click lock and can be adjusted in 36 different positions.

- Available for following LSHT-motors: OMM, OMP, OMR, OMS.
- Speed and Direction output.
- Highest resolution in the market.
- Sensor is not in contact with oil making it robust and exchangeable in the field.


EMD Speed Sensor for Orbital Motors

- Flexible and adaptable speed sensor solution that covers many application needs
- Speed and Direction output
- Highest resolution in the market
- Easy mounting
- Sensor is not in contact with oil making it robust and exchangeable in the field
- Compact design
- Patented Design
- IP 69K

EMD Speed Sensor features

- EMD speed sensor up to 180 pulses/rev
- Rotation speed and direction output available
- Speed range up to 2500 rpm
- Push-pull amplifier
- CAN output signal
- DEUTSCH DT connector 6 pin

EMD Speed Sensor dimensions

EMD Speed Sensor pinout

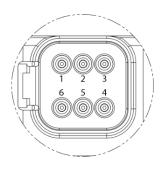


Figure 3 Pin location

Pin	Description
1	Power supply 9 - 36 Vdc
2	Power ground
3	D1 (configurable output)
4	CAN L
5	CAN H
6	D2 (configurable output)

Table 1 Pinout description

EMD Speed Sensor mating connector

Deutsch® DT connector 6 pin mating connector assembly

Pcs	Description	Deutsch® part number	Color
1	Plug	DT06-6S-PO12	black
1	Wedge lock	W6S-PO12	green
6	Solid contacts	0462-209-16141	nickel
Optio	ons		
1	Boot compl.	DT6S-BT-BK	black

Table 2 Deutsch® DT connector 6 pin mating connector assembly

For correct mounting please see Deutsch® homepage: www.deutsch.net

EMD Speed Sensor specifications

			D1	D2
	Pulse mode	Push-pull output. Direction = CCW: high, CW: low Configurable up to 180 pulse/revolutions	Square Wave	Direction
Output signal	Quadrature mode	2 channels with 90° phase shift each with 90 pulses/revolution Push-pull output	Square Wave Phase A	Square Wave Phase B
	CAN mode	Supports CAN 2.0B with SAE J1939 Message Messages Baud rate: 250 kbaud (fixed) Shaft velocity: ± 2500 rpm	Protocol wit	h Proprietary
Speed rang	ge	0 - 2500 rpm		
Supply volt	age	9 - 36 Vdc		
Maximum	power	0.8 W		
Temperatu	mperature range (ambient) -30 °C to 60 °C			
EMC-Immunity (EMI) 100 V/m ISO 13766				
Grade of e	e of enclosure IP 69 K (According to IEC 529)			
Vibration		30 G (294 m/s²)		
Shock		50 G (490 m/s²)		

Table 3 Speed sensor specifications

EMD speed sensor ordering information

Part number	Description	Output parameter	Default setting
11094003	Standard pulse mode	Pulse/rev (PPR)	180
11193031	90 pulse mode	Pulse/rev (PPR)	90
11101202	Quadrature mode	2 channels 90° phase shift	90
11287025		Node address	0x51
(legacy part number 11101205)	CAN mode	Message transmission rate	50 ms
11287032 (legacy part number 11114575)	OEM configurable sensor	2 channels 90° phase shift	90
11101188	Compatibility OMS	Pulse/rev (PPR)	55
11101182	Compatibility OMM	Pulse/rev (PPR)	22
11287010 (legacy part number 11101186)	Compatibility OMP/R	Pulse/rev (PPR)	35

Table 4 EMD speed sensor ordering information

Order information

Orbital Motor prepared for EMD speed sensor is ordered separately.

Pulse mode

The sensor generates a speed dependent pulse on D1 and a direction signal on D2.

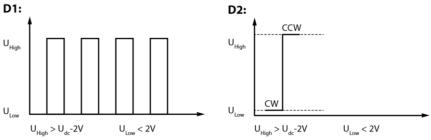


Figure 4 Pulse mode

Quadrature mode

The sensor generates a speed dependent pulse on D1 and D2 with a 90° phase shift.

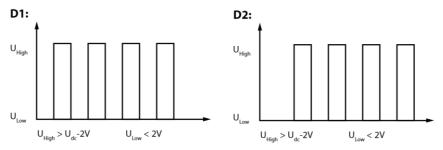


Figure 5 Quadrature mode

Note:

It's not recommended to use quadrature mode for OMM orbital motors.

CAN mode

Cyclic message specification

Interface: CAN 2.0 B Baud rate: 250 kBaud

Transmit rate: 10, 20, 50 (default), 100 or 200 ms (cyclic message transmission)

Proprietary B	Data							
29 bit	0 (LSB)	1 (MSB)	2	3 (LSB)	4 (MSB)	5	6 (LSB)	7 (MSB)
CAN ID	Reserved		Sequence number	Angular vel	locity	Reserved	CRC-16	
CAN ID:	J1939 proprietary B. Programmable 29 bit message id. ID = \$18FF20XX (source address XX is programmable, default value is \$51)							
Sequence no.:	byte (0-255) Increments 1	for each me	ssage					
Angular velocity:	Angular velocity of the shaft. 16 bit integer with 2's complementary encoding for negative values (-25,000 to 25,000). -25,000 = -2,500 RPM (CCW) 0 = 0 RPM 25,000 = 2,500 RPM (CW)							
CRC-16:	The standard	CRC16 poly	nomial is used t	o calculate the	e checksum f	or byte 0 – 5. (x ¹	.6+x ¹⁵ +x ² +1)	

Table 5 CAN Mode

EMD Speed Sensor wiring diagrams

Wiring diagram: CAN mode

Figure 6 CAN mode

Wiring diagram: Pulse and quadrature mode

Figure 7 Pulse and quadrature mode

Conversion Diagram

It is possible to replace an Orbital Motor with EM-sensor with PNP or NPN open collector output with an Orbital Motor with EMD-sensor. Conversion diagrams show how it is possible to replace present sensor with EMD-sensor.

The resistor R_L which is used in the current NPN/PNP diagram is not needed but can under certain conditions remain in the circuit:

- If R_L < U_{DC}/10 mA remove or increase the size of the resistor.
- If $R_L > U_{DC}/10$ mA no change needed.

In case the EM-sensor and the controller have different power supply, it is needed to modify the circuit so that the EMD-sensor has the same power supply as the controller.

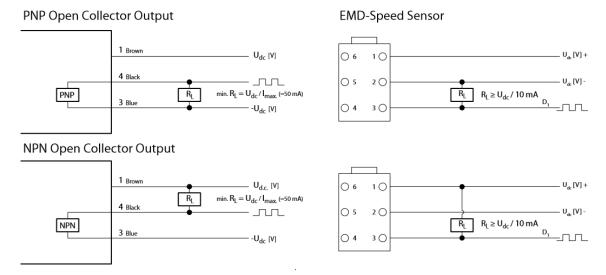


Figure 8 Conversion Diagram

Chapter 2 Sectional drawings

Topics:

- OMM EMD
- OMP/OMR EMD
- OMS EMD

OMM EMD

Figure 9 OMM EMD with Speed Sensor

OMP/OMR EMD

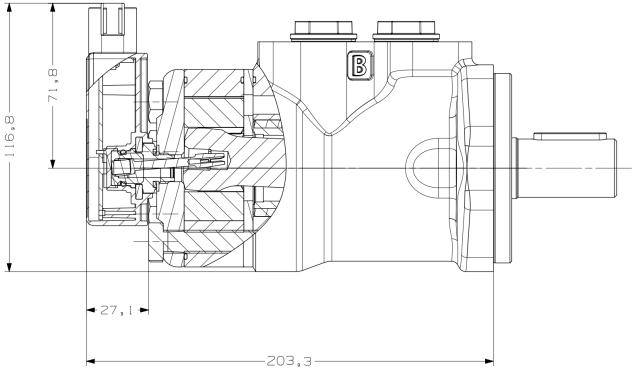


Figure 10 OMP/OMR EMD Speed Sensor

Note:

Motor length depends on displacement. Dimensions on drawings are for max. gearset size.

OMS EMD

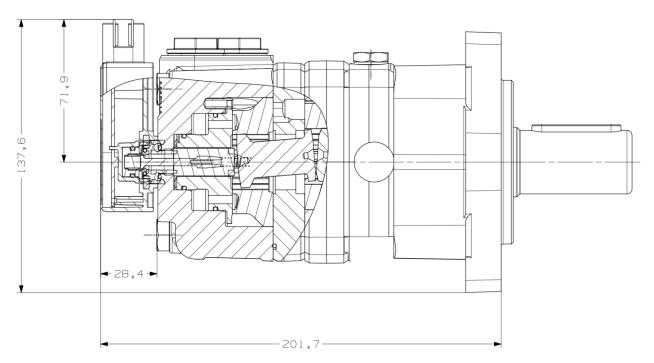


Figure 11 OMS EMD speed sensor

Note.

 ${\it Motor length depends on displacement. Dimensions on drawings are for max. gearset size.}$

Chapter 3 Filter parameter

Topics:

- Moving Average Pulse period time Number
- Positioning

Moving Average Pulse period time Number

In order to reduce noise when the frequency is calculated in pulse mode or the angular velocity is calculated in CAN mode, a moving average filter can be activated by setting a filter parameter (MA-filter) when configuring the sensor.

Valid range for the Moving Average Pulse period time Number (MAPN): 1, 2, 4, 8, 16, 32 & 64.

The (MAPN) can also be dynamic. Valid range is the same 1,2,4...64, the calculation is dependent on the detected speed and 2 types of filter-calculation, Dynamic 1 (default) & Dynamic 2 can be used.

How Dynamic 1 and Dynamic 2 select the MAPN see the table below.

RPM	M	MAPN		
	Dynamic 1	Dynamic 2		
2.0 – 3.4	1	1		
3.5 - 5.1	1	2		
5.2 - 10	2	4		
10 - 20	4	8		
20 - 80	8	16		
81 - 163	16	32		
164 - 2500	32	64		

Table 6 MAPN

Configuration of filter, see Configuration of EMD-Speed Sensor to other settings.

Positioning

It's possible to use the EMD sensor as feed-back / "encoder" in positioning applications.

Note:

In such applications, use pulse mode 180 PPR or Quadrature mode, as you in all other settings will get an adding error.

Typical Backlash in the Orbit Motors

The typical backlash in the Orbit motors is shown in the table below:

Motor	Backlash Output shaft → Sensor shaft		
	OMP	OMR	OMS
Minimum	1.2°	1.2°	9.1°
Maximum	2.2°	2.2°	14.0°

Table 7 Typical backlash in the Orbit Motors

Note:

It is not recommended to use OMM orbital motors in positioning applications where the EMD is used.

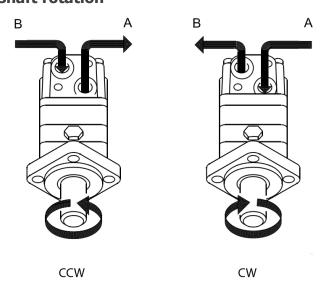
Chapter 4 Mounting of EMD Speed Sensor

Topics:

• Installation guide

Installation guide

LSHT-motors with EMD-speed sensor


Turn the sensor to the desired position and mount the sensor on the plug.

To lock the sensor, push the clip into the sensor as shown.

It is possible to mount the sensor in 36 positions.

Direction of shaft rotation

Warning:

Please note that the EMD speed sensor may fail. Output signals may not represent correct rotation speed or direction. Any application of the EMD speed sensor should be subjected to appropriate hazard and risk assessment, according to relevant safety standards for the application. Reliability data MTTF for the EMD speed sensor are available on request from your company representative.

Figures

Figure 1 Sensor principle	5
Figure 2 Speed sensor dimensions mm[in]	6
Figure 3 Pin location	7
Figure 4 Pulse mode	
Figure 5 Quadrature mode	
Figure 6 CAN mode	
Figure 7 Pulse and quadrature mode	9
Figure 8 Conversion Diagram	10
Figure 9 OMM EMD with Speed Sensor	12
Figure 10 OMP/OMR EMD Speed Sensor	
Figure 11 OMS EMD speed sensor	
Tables	
Table 1 Pinout description	7
Table 2 Deutsch® DT connector 6 pin mating connector assembly	
Table 3 Speed sensor specifications	7
Table 4 EMD speed sensor ordering information	8
Table 5 CAN Mode	
Table 6 MAPN	
Table 7 Typical backlash in the Orbit Motors	15

White Drive Motors & Steering, LLC 110 Bill Bryan Blvd, Hopkinsville, Kentucky, 42240

White Drive Motors and Steering sp. z o.o. ul. Logistyczna 1, Bielany Wrocławskie, 55-040 Kobierzyce

whitedriveproducts.com